Cargando…

ECG Signal Processing, Classification and Interpretation A Comprehensive Framework of Computational Intelligence /

Electrocardiogram (ECG) signals are among the most important sources of diagnostic information in healthcare so improvements in their analysis may also have telling consequences. Both the underlying signal technology and a burgeoning variety of algorithms and systems developments have proved success...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Gacek, Adam (Editor ), Pedrycz, Witold (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-85729-868-3
003 DE-He213
005 20220113151519.0
007 cr nn 008mamaa
008 110916s2012 xxk| s |||| 0|eng d
020 |a 9780857298683  |9 978-0-85729-868-3 
024 7 |a 10.1007/978-0-85729-868-3  |2 doi 
050 4 |a R856-857 
072 7 |a MQW  |2 bicssc 
072 7 |a TEC059000  |2 bisacsh 
072 7 |a MQW  |2 thema 
082 0 4 |a 610.28  |2 23 
245 1 0 |a ECG Signal Processing, Classification and Interpretation  |h [electronic resource] :  |b A Comprehensive Framework of Computational Intelligence /  |c edited by Adam Gacek, Witold Pedrycz. 
250 |a 1st ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a X, 278 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I: Introduction -- Introduction to ECG Signal Processing -- Fuzzy Sets: A Primer -- Neural Networks and Neurocomputing -- Evolutionary and Population-based Optimization -- Part II: Techniques and Models of Computational Intelligence for ECG Signal Analysis and Classification -- Neurocomputing in ECG Signal Classification -- Knowledge-based Representation and Processing of ECG Signals: A Fuzzy Set Approach -- Evolutionary Optimization of ECG Signal Analysis and Classification -- Granular Models of ECG Signal Analysis and Their Refinements and Abstractions -- Hybrid Architectures of ECG Analyzers and Classifiers. Part III: Computational-intelligence-based ECG System Diagnostic, Interpretation and Knowledge Acquisition Architectures -- Diagnostic ECG Systems and Computational Intelligence: Development Issues -- Interpretation of ECG Signals: A Systems Approach -- Knowledge Representation and ECG Diagnostic and Interpretation Systems. 
520 |a Electrocardiogram (ECG) signals are among the most important sources of diagnostic information in healthcare so improvements in their analysis may also have telling consequences. Both the underlying signal technology and a burgeoning variety of algorithms and systems developments have proved successful targets for recent rapid advances in research. ECG Signal Processing, Classification and Interpretation shows how the various paradigms of Computational Intelligence, employed either singly or in combination, can produce an effective structure for obtaining often vital information from ECG signals. Neural networks do well at capturing the nonlinear nature of the signals, information granules realized as fuzzy sets help to confer interpretability on the data and evolutionary optimization may be critical in supporting the structural development of ECG classifiers and models of ECG signals. The contributors address concepts, methodology, algorithms, and case studies and applications exploiting the paradigm of Computational Intelligence as a conceptually appealing and practically sound technology for ECG signal processing. The text is self-contained, providing the reader with the necessary background augmented with step-by-step explanation of the more advanced concepts. It is structured in three parts: ·         Part I covers the fundamental ideas of computational intelligence together with the relevant principles of data acquisition, morphology and use in diagnosis; ·         Part II deals with techniques and models of computational intelligence that are suitable for  signal processing; and ·         Part III details ECG system-diagnostic interpretation and knowledge acquisition architectures. A wealth of carefully organized illustrative material is included: brief numerical experiments; detailed schemes, and more advanced problems. ECG Signal Processing, Classification and Interpretation will appeal to engineers working in the field of medical equipment and to researchers investigating biomedical signal processing, bioinformatics, Computational Intelligence and its applications, bioengineering and instrumentation. The three-part structure of the material also makes the book a useful reference source for graduate students in these disciplines. 
650 0 |a Biomedical engineering. 
650 0 |a Signal processing. 
650 0 |a Cardiology. 
650 0 |a Computational intelligence. 
650 1 4 |a Biomedical Engineering and Bioengineering. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Cardiology. 
650 2 4 |a Computational Intelligence. 
700 1 |a Gacek, Adam.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Pedrycz, Witold.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447159209 
776 0 8 |i Printed edition:  |z 9780857298676 
776 0 8 |i Printed edition:  |z 9780857298690 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-85729-868-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)