Cargando…

Handbook of Document Image Processing and Recognition

The Handbook of Document Image Processing and Recognition provides a consistent, comprehensive resource on the available methods and techniques in document image processing and recognition. It includes unified comparison and contrast analysis of algorithms in standard table formats. Thus, it educate...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Doermann, David (Editor ), Tombre, Karl (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-85729-859-1
003 DE-He213
005 20220116162059.0
007 cr nn 008mamaa
008 140512s2014 xxk| s |||| 0|eng d
020 |a 9780857298591  |9 978-0-85729-859-1 
024 7 |a 10.1007/978-0-85729-859-1  |2 doi 
050 4 |a TA1634 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Handbook of Document Image Processing and Recognition  |h [electronic resource] /  |c edited by David Doermann, Karl Tombre. 
250 |a 1st ed. 2014. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a 339 illus., 159 illus. in color. eReference.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a A Brief History of Documents and Writing Systems -- Document Creation, Image Acquisition and Document Quality -- Imaging Techniques in Document Analysis Processes -- Page Segmentation Techniques in Document Analysis -- Analysis of the Logical Layout of Documents -- Page Similarity and Classification -- Text Segmentation for Document Recognition -- Font, Script, and Language Recognition -- Handprinted Character and Word Recognition -- Continuous Handwritten Script Recognition -- Middle Eastern Character Recognition -- Asian Character Recognition -- Post-processing of OCR-ed text -- Graphics Recognition Techniques -- An Overview of Symbol Recognition -- Analysis and Interpretation of Graphical Documents -- Logo and Trademark Recognition -- Recognition of Tables and Forms -- Processing Mathematical Notation -- Document Analysis in Postal Applications and Check Processing -- Digital Library Projects and Historical Documents -- Analysis and Recognition of Music Scores -- Document Analysis for Biometrics and Forensics -- Analysis of Documents Born Digital -- Image Based Retrieval and Keyword Spotting in Documents -- Text Localization and Recognition in Images and Video -- Online Handwriting Recognition -- Online Signature Verification -- Sketching Interfaces -- Datasets and Annotations for Document Analysis and Recognition -- Tools and Metrics for Document Analysis Systems Evaluation. 
520 |a The Handbook of Document Image Processing and Recognition provides a consistent, comprehensive resource on the available methods and techniques in document image processing and recognition. It includes unified comparison and contrast analysis of algorithms in standard table formats. Thus, it educates the reader in order to help them to make informed decisions on their particular problems. The handbook is divided into several parts. Each part starts with an introduction written by the two editors. These introductions set the general framework for the main topic of each part and introduces the contribution of each chapter within the framework. The introductions are followed by several chapters written by established experts of the field. Each chapter provides the reader with a clear overview of the topic and of the state of the art in techniques used (including elements of comparison between them). Each chapter is structured in the same way: It starts with an introductory text, concludes with a summary of the main points addressed in the chapter and ends with a comprehensive list of references. Whenever appropriate, the authors include specific sections describing and pointing to consolidated software and/or reference datasets. Numerous cross-references between the chapters ensure this is a truly integrated work, without unnecessary duplications and overlaps between chapters. This reference work is intended for the use by a wide audience of readers from around the world such as graduate students, researchers, librarians, lecturers, professionals, and many other people. 
650 0 |a Computer vision. 
650 0 |a Pattern recognition systems. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Computer industry. 
650 0 |a Computers-History. 
650 1 4 |a Computer Vision. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Natural Language Processing (NLP). 
650 2 4 |a The Computer Industry. 
650 2 4 |a History of Computing. 
700 1 |a Doermann, David.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Tombre, Karl.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eReference 
776 0 8 |i Printed edition:  |z 9780857298607 
776 0 8 |i Printed edition:  |z 9780857298584 
776 0 8 |i Printed edition:  |z 9781447174851 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-85729-859-1  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXRC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Reference Module Computer Science and Engineering (SpringerNature-43748)