Cargando…

Quaternions for Computer Graphics

Sir William Rowan Hamilton was a genius, and will be remembered for his significant contributions to physics and mathematics. The Hamiltonian, which is used in quantum physics to describe the total energy of a system, would have been a major achievement for anyone, but Hamilton also invented quatern...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vince, John (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-85729-760-0
003 DE-He213
005 20220113094326.0
007 cr nn 008mamaa
008 110610s2011 xxk| s |||| 0|eng d
020 |a 9780857297600  |9 978-0-85729-760-0 
024 7 |a 10.1007/978-0-85729-760-0  |2 doi 
050 4 |a QA76.9.C62 
072 7 |a UK  |2 bicssc 
072 7 |a COM036000  |2 bisacsh 
072 7 |a UK  |2 thema 
082 0 4 |a 004.01513  |2 23 
100 1 |a Vince, John.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quaternions for Computer Graphics  |h [electronic resource] /  |c by John Vince. 
250 |a 1st ed. 2011. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a XIV, 140 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a Sir William Rowan Hamilton was a genius, and will be remembered for his significant contributions to physics and mathematics. The Hamiltonian, which is used in quantum physics to describe the total energy of a system, would have been a major achievement for anyone, but Hamilton also invented quaternions, which paved the way for modern vector analysis. Quaternions are one of the most documented inventions in the history of mathematics, and this book is about their invention, and how they are used to rotate vectors about an arbitrary axis. Apart from introducing the reader to the features of quaternions and their associated algebra, the book provides valuable historical facts that bring the subject alive. Quaternions for Computer Graphics introduces the reader to quaternion algebra by describing concepts of sets, groups, fields and rings. It also includes chapters on imaginary quantities, complex numbers and the complex plane, which are essential to understanding quaternions. The book contains many illustrations and worked examples, which make it essential reading for students, academics, researchers and professional practitioners. 
650 0 |a Computer arithmetic and logic units. 
650 0 |a Mathematical logic. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Arithmetic and Logic Structures. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a Mathematical Applications in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447161073 
776 0 8 |i Printed edition:  |z 9780857297594 
776 0 8 |i Printed edition:  |z 9780857297617 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-85729-760-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)