Cargando…

Lyapunov Functionals and Stability of Stochastic Difference Equations

  Hereditary systems (or systems with either delay or after-effects) are widely used to model processes in physics, mechanics, control, economics and biology. An important element in their study is their stability. Stability conditions for difference equations with delay can be obtained using Lyapun...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Shaikhet, Leonid (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-85729-685-6
003 DE-He213
005 20220118163811.0
007 cr nn 008mamaa
008 110601s2011 xxk| s |||| 0|eng d
020 |a 9780857296856  |9 978-0-85729-685-6 
024 7 |a 10.1007/978-0-85729-685-6  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Shaikhet, Leonid.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lyapunov Functionals and Stability of Stochastic Difference Equations  |h [electronic resource] /  |c by Leonid Shaikhet. 
250 |a 1st ed. 2011. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a VI, 284 p. 119 illus., 117 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Lyapunov-type Theorems and Procedure for Lyapunov Functional Construction -- Illustrative Example -- Linear Equations with Stationary Coefficients -- Linear Equations with Nonstationary Coefficients -- Some Peculiarities of the Method -- Systems of Linear Equations with Varying Delays -- Nonlinear Systems -- Volterra Equations of the Second Type -- Difference Equations with Continuous Time -- Difference Equations as Difference Analogues of Differential Equations. 
520 |a   Hereditary systems (or systems with either delay or after-effects) are widely used to model processes in physics, mechanics, control, economics and biology. An important element in their study is their stability. Stability conditions for difference equations with delay can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Difference Equations describes the general method of Lyapunov functionals construction to investigate the stability of discrete- and continuous-time stochastic Volterra difference equations. The method allows the investigation of the degree to which the stability properties of differential equations are preserved in their difference analogues. The text is self-contained, beginning with basic definitions and the mathematical fundamentals of Lyapunov functionals construction and moving on from particular to general stability results for stochastic difference equations with constant coefficients. Results are then discussed for stochastic difference equations of linear, nonlinear, delayed, discrete and continuous types. Examples are drawn from a variety of physical and biological systems including inverted pendulum control, Nicholson's blowflies equation and predator-prey relationships. Lyapunov Functionals and Stability of Stochastic Difference Equations is primarily addressed to experts in stability theory but will also be of use in the work of pure and computational mathematicians and researchers using the ideas of optimal control to study economic, mechanical and biological systems. __________________________________________________________________________. 
650 0 |a Control engineering. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 0 |a Biomathematics. 
650 0 |a Probabilities. 
650 0 |a Multibody systems. 
650 0 |a Vibration. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Difference and Functional Equations. 
650 2 4 |a Calculus of Variations and Optimization. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Probability Theory. 
650 2 4 |a Multibody Systems and Mechanical Vibrations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780857296863 
776 0 8 |i Printed edition:  |z 9780857296849 
776 0 8 |i Printed edition:  |z 9781447171669 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-85729-685-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)