Cargando…

Pattern Recognition An Algorithmic Approach /

Observing the environment, and recognising patterns for the purpose of decision-making, is fundamental to human nature. The scientific discipline of pattern recognition (PR) is devoted to how machines use computing to discern patterns in the real world. This must-read textbook provides an exposition...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Murty, M. Narasimha (Autor), Devi, V. Susheela (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Undergraduate Topics in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-85729-495-1
003 DE-He213
005 20220113231354.0
007 cr nn 008mamaa
008 110525s2011 xxk| s |||| 0|eng d
020 |a 9780857294951  |9 978-0-85729-495-1 
024 7 |a 10.1007/978-0-85729-495-1  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a UY  |2 thema 
082 0 4 |a 004  |2 23 
100 1 |a Murty, M. Narasimha.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Pattern Recognition  |h [electronic resource] :  |b An Algorithmic Approach /  |c by M. Narasimha Murty, V. Susheela Devi. 
250 |a 1st ed. 2011. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 263 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Topics in Computer Science,  |x 2197-1781 
505 0 |a Introduction -- Representation -- Nearest Neighbour Based Classifiers -- Bayes Classifier -- Hidden Markov Models -- Decision Trees -- Support Vector Machines -- Combination of Classifiers -- Clustering -- Summary -- An Application: Handwritten Digit Recognition. 
520 |a Observing the environment, and recognising patterns for the purpose of decision-making, is fundamental to human nature. The scientific discipline of pattern recognition (PR) is devoted to how machines use computing to discern patterns in the real world. This must-read textbook provides an exposition of principal topics in PR using an algorithmic approach. Presenting a thorough introduction to the concepts of PR and a systematic account of the major topics, the text also reviews the vast progress made in the field in recent years. The algorithmic approach makes the material more accessible to computer science and engineering students. Topics and features: Makes thorough use of examples and illustrations throughout the text, and includes end-of-chapter exercises and suggestions for further reading Describes a range of classification methods, including nearest-neighbour classifiers, Bayes classifiers, and decision trees Includes chapter-by-chapter learning objectives and summaries, as well as extensive referencing Presents standard tools for machine learning and data mining, covering neural networks and support vector machines that use discriminant functions Explains important aspects of PR in detail, such as clustering Discusses hidden Markov models for speech and speaker recognition tasks, clarifying core concepts through simple examples This concise and practical text/reference will perfectly meet the needs of senior undergraduate and postgraduate students of computer science and related disciplines. Additionally, the book will be useful to all researchers who need to apply PR techniques to solve their problems. Dr. M. Narasimha Murty is a Professor in the Department of Computer Science and Automation at the Indian Institute of Science, Bangalore. Dr. V. Susheela Devi is a Senior Scientific Officer at the same institution. 
650 0 |a Computer science. 
650 1 4 |a Computer Science. 
700 1 |a Devi, V. Susheela.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780857294944 
776 0 8 |i Printed edition:  |z 9780857294968 
830 0 |a Undergraduate Topics in Computer Science,  |x 2197-1781 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-85729-495-1  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)