Cargando…

Analysis for Computer Scientists Foundations, Methods, and Algorithms /

Mathematics and mathematical modelling are of central importance in computer science, and therefore it is vital that computer scientists are aware of the latest concepts and techniques. This concise and easy-to-read textbook/reference presents an algorithmic approach to mathematical analysis, with a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Oberguggenberger, Michael (Autor), Ostermann, Alexander (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Undergraduate Topics in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-85729-446-3
003 DE-He213
005 20230810133357.0
007 cr nn 008mamaa
008 110318s2011 xxk| s |||| 0|eng d
020 |a 9780857294463  |9 978-0-85729-446-3 
024 7 |a 10.1007/978-0-85729-446-3  |2 doi 
050 4 |a QA76.9.M35 
072 7 |a UYA  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Oberguggenberger, Michael.  |e author.  |0 (orcid)0000-0002-7340-8651  |1 https://orcid.org/0000-0002-7340-8651  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analysis for Computer Scientists  |h [electronic resource] :  |b Foundations, Methods, and Algorithms /  |c by Michael Oberguggenberger, Alexander Ostermann. 
250 |a 1st ed. 2011. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a X, 342 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Topics in Computer Science,  |x 2197-1781 
505 0 |a Numbers -- Real-Valued Functions -- Trigonometry -- Complex Numbers -- Sequences and Series -- Limits and Continuity of Functions -- The Derivative of a Function -- Applications of the Derivative -- Fractals and L-Systems -- Antiderivatives -- Definite Integrals -- Taylor Series -- Numerical Integration -- Curves -- Scalar-Valued Functions of Two Variables -- Vector-Valued Functions of Two Variables -- Integration of Functions of Two Variables -- Linear Regression -- Differential Equations -- Systems of Differential Equations -- Numerical Solution of Differential Equations. 
520 |a Mathematics and mathematical modelling are of central importance in computer science, and therefore it is vital that computer scientists are aware of the latest concepts and techniques. This concise and easy-to-read textbook/reference presents an algorithmic approach to mathematical analysis, with a focus on modelling and on the applications of analysis. Fully integrating mathematical software into the text as an important component of analysis, the book makes thorough use of examples and explanations using MATLAB, Maple, and Java applets. Mathematical theory is described alongside the basic concepts and methods of numerical analysis, supported by computer experiments and programming exercises, and an extensive use of figure illustrations. Topics and features: Thoroughly describes the essential concepts of analysis, covering real and complex numbers, trigonometry, sequences and series, functions, derivatives and antiderivatives, definite integrals and double integrals, and curves Provides summaries and exercises in each chapter, as well as computer experiments Discusses important applications and advanced topics, such as fractals and L-systems, numerical integration, linear regression, and differential equations Presents tools from vector and matrix algebra in the appendices, together with further information on continuity Includes definitions, propositions and examples throughout the text, together with a list of relevant textbooks and references for further reading Supplementary software can be downloaded from the book's webpage at www.springer.com This textbook is essential for undergraduate students in Computer Science. Written to specifically address the needs of computer scientists and researchers, it will also serve professionals looking to bolster their knowledge in such fundamentals extremely well. Dr. Michael Oberguggenberger is a professor in the Department of Civil Engineering Sciences at the University of Innsbruck, Austria. Dr. Alexander Ostermann is a professor in the Department of Mathematics at the University of Innsbruck, Austria. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Mathematics  |x Data processing. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering  |x Data processing. 
650 0 |a Discrete mathematics. 
650 1 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Discrete Mathematics in Computer Science. 
700 1 |a Ostermann, Alexander.  |e author.  |0 (orcid)0000-0003-0194-2481  |1 https://orcid.org/0000-0003-0194-2481  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780857294456 
776 0 8 |i Printed edition:  |z 9780857294470 
830 0 |a Undergraduate Topics in Computer Science,  |x 2197-1781 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-85729-446-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)