Cargando…

Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems

An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differenti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Haragus, Mariana (Autor), Iooss, Gérard (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-85729-112-7
003 DE-He213
005 20220114180901.0
007 cr nn 008mamaa
008 101123s2011 xxk| s |||| 0|eng d
020 |a 9780857291127  |9 978-0-85729-112-7 
024 7 |a 10.1007/978-0-85729-112-7  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Haragus, Mariana.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems  |h [electronic resource] /  |c by Mariana Haragus, Gérard Iooss. 
250 |a 1st ed. 2011. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a XI, 329 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Elementary Bifurcations -- Center Manifolds -- Normal Forms -- Reversible Bifurcations -- Applications -- Appendix. 
520 |a An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades. Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate students and researchers working in dynamical system theory. 
650 0 |a Dynamical systems. 
650 0 |a Differential equations. 
650 0 |a Mathematics. 
650 0 |a Nonlinear Optics. 
650 1 4 |a Dynamical Systems. 
650 2 4 |a Differential Equations. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Nonlinear Optics. 
700 1 |a Iooss, Gérard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780857291110 
776 0 8 |i Printed edition:  |z 9780857291134 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-85729-112-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)