Cargando…

Stabilization of Navier-Stokes Flows

Stabilization of Navier-Stokes Flows presents recent notable progress in the mathematical theory of stabilization of Newtonian fluid flows. Finite-dimensional feedback controllers are used to stabilize exponentially the equilibrium solutions of Navier-Stokes equations, reducing or eliminating turbul...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Barbu, Viorel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Communications and Control Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-85729-043-4
003 DE-He213
005 20220118122731.0
007 cr nn 008mamaa
008 101119s2011 xxk| s |||| 0|eng d
020 |a 9780857290434  |9 978-0-85729-043-4 
024 7 |a 10.1007/978-0-85729-043-4  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Barbu, Viorel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stabilization of Navier-Stokes Flows  |h [electronic resource] /  |c by Viorel Barbu. 
250 |a 1st ed. 2011. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 276 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Communications and Control Engineering,  |x 2197-7119 
505 0 |a Preliminaries -- Stabilization of Abstract Parabolic Systems -- Stabilization of Navier-Stokes Flows -- Stabilization by Noise of Navier-Stokes Equations -- Robust Stabilization of the Navier-Stokes Equation via the H-infinity Control Theory. 
520 |a Stabilization of Navier-Stokes Flows presents recent notable progress in the mathematical theory of stabilization of Newtonian fluid flows. Finite-dimensional feedback controllers are used to stabilize exponentially the equilibrium solutions of Navier-Stokes equations, reducing or eliminating turbulence. Stochastic stabilization and robustness of stabilizable feedback are also discussed. The text treats the questions: • What is the structure of the stabilizing feedback controller? • How can it be designed using a minimal set of eigenfunctions of the Stokes-Oseen operator? The analysis developed here provides a rigorous pattern for the design of efficient stabilizable feedback controllers to meet the needs of practical problems and the conceptual controllers actually detailed will render the reader's task of application easier still. Stabilization of Navier-Stokes Flows avoids the tedious and technical details often present in mathematical treatments of control and Navier-Stokes equations and will appeal to a sizeable audience of researchers and graduate students interested in the mathematics of flow and turbulence control and in Navier-Stokes equations in particular. The chief points of linear functional analysis, linear algebra, probability theory and general variational theory of elliptic, parabolic and Navier-Stokes equations are reviewed in an introductory chapter and at the end of chapters 3 and 4. 
650 0 |a Control engineering. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Continuum mechanics. 
650 0 |a Differential equations. 
650 0 |a Fluid mechanics. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Continuum Mechanics. 
650 2 4 |a Differential Equations. 
650 2 4 |a Engineering Fluid Dynamics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780857290427 
776 0 8 |i Printed edition:  |z 9781447126102 
776 0 8 |i Printed edition:  |z 9780857290441 
830 0 |a Communications and Control Engineering,  |x 2197-7119 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-85729-043-4  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)