Cargando…

New Foundations in Mathematics The Geometric Concept of Number /

The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sobczyk, Garret (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2013.
Edición:1st ed. 2013.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-8385-6
003 DE-He213
005 20220119171109.0
007 cr nn 008mamaa
008 121026s2013 xxu| s |||| 0|eng d
020 |a 9780817683856  |9 978-0-8176-8385-6 
024 7 |a 10.1007/978-0-8176-8385-6  |2 doi 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.5  |2 23 
100 1 |a Sobczyk, Garret.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a New Foundations in Mathematics  |h [electronic resource] :  |b The Geometric Concept of Number /  |c by Garret Sobczyk. 
250 |a 1st ed. 2013. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XIV, 370 p. 55 illus., 32 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Modular Number Systems -- 2 Complex and Hyperbolic Numbers -- 3 Geometric Algebra -- 4 Vector Spaces and Matrices -- 5 Outer Product and Determinants -- 6 Systems of Linear Equations -- 7 Linear Transformations on R^n -- 8 Structure of a Linear Operator -- 9 Linear and Bilinear Forms -- 10 Hermitian Inner Product Spaces -- 11 Geometry of Moving Planes -- 12 Representations of the Symmetric Group -- 13 Calculus on m-Surfaces -- 14 Differential Geometry of Curves -- 15 Differential Geometry of k-Surfaces -- 16 Mappings Between Surfaces -- 17 Non-Euclidean and Projective Geometries -- 18 Lie Groups and Lie Algebras -- References -- Symbols. 
520 |a The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. The book begins with a discussion of modular numbers (clock arithmetic) and modular polynomials. This leads to the idea of a spectral basis, the complex and hyperbolic numbers, and finally to geometric algebra, which lays the groundwork for the remainder of the text. Many topics are presented in a new light, including: * vector spaces and matrices; * structure of linear operators and quadratic forms; * Hermitian inner product spaces; * geometry of moving planes; * spacetime of special relativity; * classical integration theorems; * differential geometry of curves and smooth surfaces; * projective geometry; * Lie groups and Lie algebras. Exercises with selected solutions are provided, and chapter summaries are included to reinforce concepts as they are covered. Links to relevant websites are often given, and supplementary material is available on the author's website.   New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics. 
650 0 |a Algebras, Linear. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Group theory. 
650 0 |a Mathematical physics. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Algebra. 
650 1 4 |a Linear Algebra. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817683863 
776 0 8 |i Printed edition:  |z 9780817683849 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-8385-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)