Cargando…

Finite Frames Theory and Applications /

Hilbert space frames have long served as a valuable tool for signal and image processing due to their resilience to additive noise, quantization, and erasures, as well as their ability to capture valuable signal characteristics.  More recently, finite frame theory has grown into an important researc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Casazza, Peter G. (Editor ), Kutyniok, Gitta (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2013.
Edición:1st ed. 2013.
Colección:Applied and Numerical Harmonic Analysis,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-8373-3
003 DE-He213
005 20220119181637.0
007 cr nn 008mamaa
008 120914s2013 xxu| s |||| 0|eng d
020 |a 9780817683733  |9 978-0-8176-8373-3 
024 7 |a 10.1007/978-0-8176-8373-3  |2 doi 
050 4 |a QA221-224 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 511.4  |2 23 
245 1 0 |a Finite Frames  |h [electronic resource] :  |b Theory and Applications /  |c edited by Peter G. Casazza, Gitta Kutyniok. 
250 |a 1st ed. 2013. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XVI, 485 p. 35 illus., 20 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
505 0 |a Introduction -- Constructing Finite Frames with a Given Spectrum.-Spanning and Independence Properties of Finite.-Alegebraic Geometry and Finite Frames -- Group Frames -- Gabor Framses in Finite Dimensions -- Frames as Codes -- Quantization and Finite Frames -- Finite Frames for Sparse Signal Processing -- Finite Frames and Filter Banks -- Finite Frame theory in Pure Mathematics -- Probabilitstic Frames -- Fusion Frames. 
520 |a Hilbert space frames have long served as a valuable tool for signal and image processing due to their resilience to additive noise, quantization, and erasures, as well as their ability to capture valuable signal characteristics.  More recently, finite frame theory has grown into an important research topic in its own right, with a myriad of applications to pure and applied mathematics, engineering, computer science, and other areas.  The number of research publications, conferences, and workshops on this topic has increased dramatically over the past few years, but no survey paper or monograph has yet appeared on the subject. Edited by two of the leading experts in the field, Finite Frames aims to fill this void in the literature by providing a comprehensive, systematic study of finite frame theory and applications.  With carefully selected contributions written by highly experienced researchers, it covers topics including: * Finite Frame Constructions; * Optimal Erasure Resilient Frames; * Quantization of Finite Frames; * Finite Frames and Compressed Sensing; * Group and Gabor Frames; * Fusion Frames. Despite the variety of its chapters' source and content, the book's notation and terminology are unified throughout and provide a definitive picture of the current state of frame theory. With a broad range of applications and a clear, full presentation, this book is a highly valuable resource for graduate students and researchers across disciplines such as applied harmonic analysis, electrical engineering, quantum computing, medicine, and more.  It is designed to be used as a supplemental textbook, self-study guide, or reference book. 
650 0 |a Approximation theory. 
650 0 |a Signal processing. 
650 0 |a Fourier analysis. 
650 0 |a Image processing-Digital techniques. 
650 0 |a Computer vision. 
650 0 |a Operator theory. 
650 0 |a Mathematics. 
650 1 4 |a Approximations and Expansions. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Casazza, Peter G.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kutyniok, Gitta.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817683740 
776 0 8 |i Printed edition:  |z 9780817683726 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-8373-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)