Cargando…

Quantile-Based Reliability Analysis

Quantile-Based Reliability Analysis presents a novel approach to reliability theory using quantile functions in contrast to the traditional approach based on distribution functions. Quantile functions and distribution functions are mathematically equivalent ways to define a probability distribution....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Nair, N. Unnikrishnan (Autor), Sankaran, P.G (Autor), Balakrishnan, N. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Birkhäuser, 2013.
Edición:1st ed. 2013.
Colección:Statistics for Industry and Technology,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-8361-0
003 DE-He213
005 20220119144006.0
007 cr nn 008mamaa
008 130823s2013 xxu| s |||| 0|eng d
020 |a 9780817683610  |9 978-0-8176-8361-0 
024 7 |a 10.1007/978-0-8176-8361-0  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Nair, N. Unnikrishnan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quantile-Based Reliability Analysis  |h [electronic resource] /  |c by N. Unnikrishnan Nair, P.G. Sankaran, N. Balakrishnan. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XX, 397 p. 20 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Industry and Technology,  |x 2364-625X 
505 0 |a Preface -- Chapter I Quantile Functions -- Chapter II Quantile-Based Reliability Concepts -- Chapter III Quantile Function Models -- Chapter IV Ageing Concepts -- Chapter V Total Time on Test Transforms (TTT) -- Chapter VI L-Moments of Residual Life and Partial Moments -- Chapter VII Nonmonotone Hazard Quantile Functions -- Chapter VIII Stochastic Orders in Reliability -- IX Estimation and Modeling.- References -- Index. 
520 |a Quantile-Based Reliability Analysis presents a novel approach to reliability theory using quantile functions in contrast to the traditional approach based on distribution functions. Quantile functions and distribution functions are mathematically equivalent ways to define a probability distribution. However, quantile functions have several advantages over distribution functions. First, many data sets with non-elementary distribution functions can be modeled by quantile functions with simple forms. Second, most quantile functions approximate many of the standard models in reliability analysis quite well. Consequently, if physical conditions do not suggest a plausible model, an arbitrary quantile function will be a good first approximation. Finally, the inference procedures for quantile models need less information and are more robust to outliers.   Quantile-Based Reliability Analysis's innovative methodology is laid out in a well-organized sequence of topics, including:   ·       Definitions and properties of reliability concepts in terms of quantile functions; ·       Ageing concepts and their interrelationships; ·       Total time on test transforms; ·       L-moments of residual life; ·       Score and tail exponent functions and relevant applications; ·       Modeling problems and stochastic orders connecting quantile-based reliability functions.   An ideal text for advanced undergraduate and graduate courses in reliability and statistics, Quantile-Based Reliability Analysis also contains many unique topics for study and research in survival analysis, engineering, economics, and the medical sciences. In addition, its illuminating discussion of the general theory of quantile functions is germane to many contexts involving statistical analysis.  . 
650 0 |a Statistics . 
650 0 |a Probabilities. 
650 0 |a Biometry. 
650 0 |a Mathematical models. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Probability Theory. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
650 2 4 |a Biostatistics. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
700 1 |a Sankaran, P.G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Balakrishnan, N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817683603 
776 0 8 |i Printed edition:  |z 9780817683627 
776 0 8 |i Printed edition:  |z 9781493951673 
830 0 |a Statistics for Industry and Technology,  |x 2364-625X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-8361-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)