Cargando…

Classical Mechanics with Mathematica®

This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject.  Developed by the author from 35 years of teaching experience, the presentation is designed to give students an overview o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Romano, Antonio (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2012.
Edición:1st ed. 2012.
Colección:Modeling and Simulation in Science, Engineering and Technology,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-8352-8
003 DE-He213
005 20220119180008.0
007 cr nn 008mamaa
008 120928s2012 xxu| s |||| 0|eng d
020 |a 9780817683528  |9 978-0-8176-8352-8 
024 7 |a 10.1007/978-0-8176-8352-8  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Romano, Antonio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Classical Mechanics with Mathematica®  |h [electronic resource] /  |c by Antonio Romano. 
250 |a 1st ed. 2012. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a XIV, 506 p. 127 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modeling and Simulation in Science, Engineering and Technology,  |x 2164-3725 
505 0 |a I Introduction to Linear Algebra and Differential Geometry.- 1 Vector Space and Linear Maps.- 2 Tensor Algebra.- 3 Skew-symmetric Tensors and Exterior Algebra.- 4 Euclidean and Symplectic Vector Spaces.- 5 Duality and Euclidean Tensors.- 6 Differentiable Manifolds.- 7 One-Parameter Groups of Diffeomorphisms.- 8 Exterior Derivative and Integration.- 9 Absolute Differential Calculus -- 10 An Overview of Dynamical Systems.- II Mechanics.- 11 Kinematics of a Point Particle.- 12 Kinematics of Rigid Bodies.- 13 Principles of Dynamics.- 14 Dynamics of a Material Point.- 15 General Principles of Rigid Body Dynamics.- 16 Dynamics of a Rigid Body.- 17 Lagrangian Dynamics.- 18 Hamiltonian Dynamics.- 19 Hamilton-Jacobi Theory.- 20 Completely Integrable Systems.- 21 Elements of Statistical Mechanics of Equilibrium.- 22 Impulsive Dynamics.- 23 Introduction to Fluid Mechanics -- A First-Order PDE.- B Fourier's Series.- References.- Index. 
520 |a This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject.  Developed by the author from 35 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field-from Newton to Lagrange-while also painting a clear picture of the most modern developments.  Throughout, it makes heavy use of the powerful tools offered by Mathematica® . The volume is organized into two parts.  The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book.  Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus.  The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dynamics, among others. With a unique selection of topics and a large array of exercises to reinforce concepts, Classical Mechanics with Mathematica is an excellent resource for graduate students in physics.  It can also serve as a reference for researchers wishing to gain a deeper understanding of both classical and modern mechanics. 
650 0 |a Geometry, Differential. 
650 0 |a Mechanics. 
650 0 |a Mathematical physics. 
650 0 |a Continuum mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 1 4 |a Differential Geometry. 
650 2 4 |a Classical Mechanics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Continuum Mechanics. 
650 2 4 |a Solid Mechanics. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817683511 
776 0 8 |i Printed edition:  |z 9780817683535 
830 0 |a Modeling and Simulation in Science, Engineering and Technology,  |x 2164-3725 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-8352-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)