Cargando…

Singularities of Differentiable Maps, Volume 2 Monodromy and Asymptotics of Integrals /

Originally published in the 1980s, Singularities of Differentiable Maps: Monodromy and Asymptotics of Integrals was the second of two volumes that together formed a translation of the authors' influential Russian monograph on singularity theory. This uncorrected softcover reprint of the work br...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Arnold, Elionora (Autor), Gusein-Zade, S.M (Autor), Varchenko, Alexander N. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2012.
Edición:1st ed. 2012.
Colección:Modern Birkhäuser Classics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-8343-6
003 DE-He213
005 20220525154931.0
007 cr nn 008mamaa
008 120516s2012 xxu| s |||| 0|eng d
020 |a 9780817683436  |9 978-0-8176-8343-6 
024 7 |a 10.1007/978-0-8176-8343-6  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Arnold, Elionora.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Singularities of Differentiable Maps, Volume 2  |h [electronic resource] :  |b Monodromy and Asymptotics of Integrals /  |c by Elionora Arnold, S.M. Gusein-Zade, Alexander N. Varchenko. 
250 |a 1st ed. 2012. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a X, 492 p. 83 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modern Birkhäuser Classics,  |x 2197-1811 
505 0 |a Part I. The topological structure of isolated critical points of functions -- Introduction -- Elements of the theory of Picard-Lefschetz -- The topology of the non-singular level set and the variation operator of a singularity -- The bifurcation sets and the monodromy group of a singularity -- The intersection matrices of singularities of functions of two variables -- The intersection forms of boundary singularities and the topology of complete intersections -- Part II. Oscillatory integrals -- Discussion of results -- Elementary integrals and the resolution of singularities of the phase -- Asymptotics and Newton polyhedra -- The singular index, examples -- Part III. Integrals of holomorphic forms over vanishing cycles -- The simplest properties of the integrals -- Complex oscillatory integrals -- Integrals and differential equations -- The coefficients of series expansions of integrals, the weighted and Hodge filtrations and the spectrum of a critical point -- The mixed Hodge structure of an isolated critical point of a holomorphic function -- The period map and the intersection form -- References -- Subject Index. 
520 |a Originally published in the 1980s, Singularities of Differentiable Maps: Monodromy and Asymptotics of Integrals was the second of two volumes that together formed a translation of the authors' influential Russian monograph on singularity theory. This uncorrected softcover reprint of the work brings its still-relevant content back into the literature, making it available-and affordable-to a global audience of researchers and practitioners. While the first volume of this title, subtitled Classification of Critical Points, Caustics and Wave Fronts, contained the zoology of differentiable maps-that is, was devoted to a description of what, where, and how singularities could be encountered-this second volume concentrates on elements of the anatomy and physiology of singularities of differentiable functions. The questions considered here are about the structure of singularities and how they function. In the first part the authors consider the topological structure of isolated critical points of holomorphic functions: vanishing cycles; distinguished bases; intersection matrices; monodromy groups; the variation operator; and their interconnections and method of calculation. The second part is devoted to the study of the asymptotic behavior of integrals of the method of stationary phase, which is widely met within applications. The third and last part deals with integrals evaluated over level manifolds in a neighborhood of the critical point of a holomorphic function. This monograph is suitable for mathematicians, researchers, postgraduates, and specialists in the areas of mechanics, physics, technology, and other sciences dealing with the theory of singularities of differentiable maps. 
650 0 |a Mathematical analysis. 
650 0 |a Algebraic geometry. 
650 0 |a Geometry, Differential. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Mathematics. 
650 1 4 |a Analysis. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Manifolds and Cell Complexes. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Gusein-Zade, S.M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Varchenko, Alexander N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817683443 
776 0 8 |i Printed edition:  |z 9780817683429 
830 0 |a Modern Birkhäuser Classics,  |x 2197-1811 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-8343-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)