Cargando…

Foundations of Mathematical Analysis

Mathematical analysis is fundamental to the undergraduate curriculum not only because it is the stepping stone for the study of advanced analysis, but also because of its applications to other branches of mathematics, physics, and engineering at both the undergraduate and graduate levels. This self-...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ponnusamy, Saminathan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2012.
Edición:1st ed. 2012.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-8292-7
003 DE-He213
005 20220117130931.0
007 cr nn 008mamaa
008 111216s2012 xxu| s |||| 0|eng d
020 |a 9780817682927  |9 978-0-8176-8292-7 
024 7 |a 10.1007/978-0-8176-8292-7  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Ponnusamy, Saminathan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Foundations of Mathematical Analysis  |h [electronic resource] /  |c by Saminathan Ponnusamy. 
250 |a 1st ed. 2012. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a XV, 570 p. 205 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Real Number System -- Sequences: Convergence and Divergence -- Limits, Continuity, and Differentiability -- Applications of Differentiability -- Series: Convergence and Divergence -- Definite and Indefinite Integrals -- Improper Integrals and Applications of Riemann Integrals -- Power Series -- Uniform Convergence of Sequences of Functions -- Fourier Series and Applications -- Functions of Bounded Variation and Riemann-Stieltjes Integrals -- References -- Index of Special Notations -- Hints for Selected Questions and Exercises -- Index. 
520 |a Mathematical analysis is fundamental to the undergraduate curriculum not only because it is the stepping stone for the study of advanced analysis, but also because of its applications to other branches of mathematics, physics, and engineering at both the undergraduate and graduate levels. This self-contained textbook consists of eleven chapters, which are further divided into sections and subsections. Each section includes a careful selection of special topics covered that will serve to illustrate the scope and power of various methods in real analysis. The exposition is developed with thorough explanations, motivating examples, and illustrations conveying geometric intuition in a pleasant and informal style to help readers grasp difficult concepts. Key features include: * "Questions and Exercises" are provided at the end of each section, covering a broad spectrum of content with various levels of difficulty; * Some of the exercises are routine in nature while others are interesting, instructive, and challenging with hints provided for selected exercises; * Covers a broad spectrum of content with a range of difficulty that will enable students to learn techniques and standard analysis tools; * Introduces convergence, continuity, differentiability, the Riemann integral, power series, uniform convergence of sequences and series of functions, among other topics; * Examines various important applications throughout the book; * Figures throughout the book to demonstrate ideas and concepts are drawn using Mathematica. Foundations of Mathematical Analysis is intended for undergraduate students and beginning graduate students interested in a fundamental introduction to the subject. It may be used in the classroom or as a self-study guide without any required prerequisites. 
650 0 |a Mathematical analysis. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Fourier analysis. 
650 1 4 |a Analysis. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Fourier Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817682910 
776 0 8 |i Printed edition:  |z 9780817682934 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-8292-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)