Cargando…

Green's Functions and Infinite Products Bridging the Divide /

This textbook accounts for two seemingly unrelated mathematical topics drawn from two separate areas of mathematics that have no evident points of contiguity. Green's function is a topic in partial differential equations and covered in most standard texts, while infinite products are used in ma...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Melnikov, Yuri A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2011.
Edición:1st ed. 2011.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-8280-4
003 DE-He213
005 20220116223913.0
007 cr nn 008mamaa
008 110829s2011 xxu| s |||| 0|eng d
020 |a 9780817682804  |9 978-0-8176-8280-4 
024 7 |a 10.1007/978-0-8176-8280-4  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Melnikov, Yuri A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Green's Functions and Infinite Products  |h [electronic resource] :  |b Bridging the Divide /  |c by Yuri A. Melnikov. 
250 |a 1st ed. 2011. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2011. 
300 |a X, 165 p. 32 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a INTRODUCTION -- CHAPTER 1: Infinite Products & Elementary Functions -- 1.1 Classical Euler representations -- 1.2 Alternative derivations -- 1.3 Other elementary functions -- 1.4 Chapter exercises -- CHAPTER 2: Green's Functions for the Laplace Equation -- 2.1 Construction by the method of images -- 2.2 Conformal mapping method -- 2.3 Chapter exercises -- CHAPTER 3: Green's Functions for ODE -- 3.1 Construction by defining properties -- 3.2 Method of variation of parameters -- 3.3 Chapter exercises -- CHAPTER 4: Method of Eigenfunction Expansion -- 4.1 Hilbert's theorem -- 4.2 Cartesian coordinates -- 4.3 Polar coordinates -- 4.4 Chapter exercises -- CHAPTER 5: New Infinite Product Representations -- 5.1 Method of images extends frontiers -- 5.2 Trigonometric functions -- 5.3 Hyperbolic functions -- 5.4 Chapter exercises -- HINTS AND ANSWERS TO CHAPTER EXERCISES -- REFERENCES -- INDEX. 
520 |a This textbook accounts for two seemingly unrelated mathematical topics drawn from two separate areas of mathematics that have no evident points of contiguity. Green's function is a topic in partial differential equations and covered in most standard texts, while infinite products are used in mathematical analysis. For the two-dimensional Laplace equation, Green's functions are conventionally constructed by either the method of images, conformal mapping, or the eigenfunction expansion. The present text focuses on the construction of Green's functions for a wide range of boundary-value problems. Green's Functions and Infinite Products provides a thorough introduction to the classical subjects of the construction of Green's functions for the two-dimensional Laplace equation and the infinite product representation of elementary functions.  Every chapter begins with a review guide, outlining the basic concepts covered. A set of carefully designed challenging exercises is available at the end of each chapter to provide the reader with the opportunity to explore the concepts in more detail. Hints, comments, and answers to most of those exercises can be found at the end of the text. In addition, several illustrative examples are offered at the end of most sections. This text is intended for an elective graduate course or seminar within the scope of either pure or applied mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Differential equations. 
650 0 |a Mathematics. 
650 1 4 |a Analysis. 
650 2 4 |a Differential Equations. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817682798 
776 0 8 |i Printed edition:  |z 9780817682811 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-8280-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)