Cargando…

Differentiable Manifolds A Theoretical Physics Approach /

This textbook gives a concise introduction to the theory of differentiable manifolds, focusing on their applications to differential equations, differential geometry, and Hamiltonian mechanics. The work's first three chapters introduce the basic concepts of the theory, such as differentiable ma...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Torres del Castillo, Gerardo F. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2012.
Edición:1st ed. 2012.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-8271-2
003 DE-He213
005 20220114134011.0
007 cr nn 008mamaa
008 111007s2012 xxu| s |||| 0|eng d
020 |a 9780817682712  |9 978-0-8176-8271-2 
024 7 |a 10.1007/978-0-8176-8271-2  |2 doi 
050 4 |a QA613-613.8 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBP  |2 thema 
082 0 4 |a 514.34  |2 23 
100 1 |a Torres del Castillo, Gerardo F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Differentiable Manifolds  |h [electronic resource] :  |b A Theoretical Physics Approach /  |c by Gerardo F. Torres del Castillo. 
250 |a 1st ed. 2012. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a VIII, 275 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface.-1 Manifolds.-  2 Lie Derivatives -- 3 Differential Forms -- 4 Integral Manifolds -- 5 Connections -- 6. Riemannian Manifolds -- 7 Lie Groups -- 8 Hamiltonian Classical Mechanics -- References.-Index. 
520 |a This textbook gives a concise introduction to the theory of differentiable manifolds, focusing on their applications to differential equations, differential geometry, and Hamiltonian mechanics. The work's first three chapters introduce the basic concepts of the theory, such as differentiable maps, tangent vectors, vector and tensor fields, differential forms, local one-parameter groups of diffeomorphisms, and Lie derivatives. These tools are subsequently employed in the study of differential equations (Chapter 4), connections (Chapter 5), Riemannian manifolds (Chapter 6), Lie groups (Chapter 7), and Hamiltonian mechanics (Chapter 8). Throughout, the book contains examples, worked out in detail, as well as exercises intended to show how the formalism is applied to actual computations and to emphasize the connections among various areas of mathematics. Differentiable Manifolds is addressed to advanced undergraduate or beginning graduate students in mathematics or physics. Prerequisites include multivariable calculus, linear algebra, differential equations, and (for the last chapter) a basic knowledge of analytical mechanics. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Mechanics. 
650 0 |a Mathematical physics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Manifolds and Cell Complexes. 
650 2 4 |a Classical Mechanics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Topological Groups and Lie Groups. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817682705 
776 0 8 |i Printed edition:  |z 9780817682729 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-8271-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)