Cargando…

Selected Unsolved Problems in Coding Theory

Using an original mode of presentation and emphasizing the computational nature of the subject, this book explores a number of the unsolved problems that continue to exist in coding theory. A well-established and still highly relevant branch of mathematics, the theory of error-correcting codes is co...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Joyner, David (Autor), Kim, Jon-Lark (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2011.
Edición:1st ed. 2011.
Colección:Applied and Numerical Harmonic Analysis,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-8256-9
003 DE-He213
005 20220116230321.0
007 cr nn 008mamaa
008 110823s2011 xxu| s |||| 0|eng d
020 |a 9780817682569  |9 978-0-8176-8256-9 
024 7 |a 10.1007/978-0-8176-8256-9  |2 doi 
050 4 |a QA76.9.M35 
072 7 |a UYA  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Joyner, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Selected Unsolved Problems in Coding Theory  |h [electronic resource] /  |c by David Joyner, Jon-Lark Kim. 
250 |a 1st ed. 2011. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2011. 
300 |a XII, 248 p. 17 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
505 0 |a Preface -- Background -- Codes and Lattices -- Kittens and Blackjack -- RH and Coding Theory -- Hyperelliptic Curves and QR Codes -- Codes from Modular Curves -- Appendix -- Bibliography -- Index. 
520 |a Using an original mode of presentation and emphasizing the computational nature of the subject, this book explores a number of the unsolved problems that continue to exist in coding theory. A well-established and still highly relevant branch of mathematics, the theory of error-correcting codes is concerned with reliably transmitting data over a 'noisy' channel. Despite its frequent use in a range of contexts-the first close-up pictures of the surface of Mars, taken by the NASA spacecraft Mariner 9, were transmitted back to Earth using a Reed-Muller code-the subject contains interesting problems that have to date resisted solution by some of the most prominent mathematicians of recent decades. Employing SAGE-a free open-source mathematics software system-to illustrate their ideas, the authors begin by providing background on linear block codes and introducing some of the special families of codes explored in later chapters, such as quadratic residue and algebraic-geometric codes. Also surveyed is the theory that intersects self-dual codes, lattices, and invariant theory, which leads to an intriguing analogy between the Duursma zeta function and the zeta function attached to an algebraic curve over a finite field. The authors then examine a connection between the theory of block designs and the Assmus-Mattson theorem and scrutinize the knotty problem of finding a non-trivial estimate for the number of solutions over a finite field to a hyperelliptic polynomial equation of "small" degree, as well as the best asymptotic bounds for a binary linear block code. Finally, some of the more mysterious aspects relating modular forms and algebraic-geometric codes are discussed. Selected Unsolved Problems in Coding Theory is intended for graduate students and researchers in algebraic coding theory, especially those who are interested in finding current unsolved problems. Familiarity with concepts in algebra, number theory, and modular forms is assumed. The work may be used as supplementary reading material in a graduate course on coding theory or for self-study. 
650 0 |a Computer science-Mathematics. 
650 0 |a Coding theory. 
650 0 |a Information theory. 
650 0 |a Signal processing. 
650 0 |a Mathematics. 
650 0 |a Number theory. 
650 0 |a Algebraic geometry. 
650 1 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Coding and Information Theory. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Kim, Jon-Lark.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817682552 
776 0 8 |i Printed edition:  |z 9780817682576 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-8256-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)