Cargando…

The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator

Interest in the spin-c Dirac operator originally came about from the study of complex analytic manifolds, where in the non-Kähler case the Dolbeault operator is no longer suitable for getting local formulas for the Riemann-Roch number or the holomorphic Lefschetz number. However, every symplectic m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Duistermaat, J.J (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2011.
Edición:1st ed. 2011.
Colección:Modern Birkhäuser Classics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-8247-7
003 DE-He213
005 20220117043942.0
007 cr nn 008mamaa
008 110727s2011 xxu| s |||| 0|eng d
020 |a 9780817682477  |9 978-0-8176-8247-7 
024 7 |a 10.1007/978-0-8176-8247-7  |2 doi 
050 4 |a QA614-614.97 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 514.74  |2 23 
100 1 |a Duistermaat, J.J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator  |h [electronic resource] /  |c by J.J. Duistermaat. 
250 |a 1st ed. 2011. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2011. 
300 |a VIII, 247 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modern Birkhäuser Classics,  |x 2197-1811 
505 0 |a 1 Introduction -- 2 The Dolbeault-Dirac Operator -- 3 Clifford Modules -- 4 The Spin Group and the Spin-c Group -- 5 The Spin-c Dirac Operator -- 6 Its Square -- 7 The Heat Kernel Method -- 8 The Heat Kernel Expansion -- 9 The Heat Kernel on a Principal Bundle -- 10 The Automorphism -- 11 The Hirzebruch-Riemann-Roch Integrand -- 12 The Local Lefschetz Fixed Point Formula -- 13 Characteristic Case -- 14 The Orbifold Version -- 15 Application to Symplectic Geometry -- 16 Appendix: Equivariant Forms. 
520 |a Interest in the spin-c Dirac operator originally came about from the study of complex analytic manifolds, where in the non-Kähler case the Dolbeault operator is no longer suitable for getting local formulas for the Riemann-Roch number or the holomorphic Lefschetz number. However, every symplectic manifold (phase space in classical mechanics) also carries an almost complex structure and hence a corresponding spin-c Dirac operator. Using the heat kernels theory of Berline, Getzler, and Vergne, this work revisits some fundamental concepts of the theory, and presents the application to symplectic geometry. J.J. Duistermaat was well known for his beautiful and concise expositions of seemingly familiar concepts, and this classic study is certainly no exception. Reprinted as it was originally published, this work is as an affordable text that will be of interest to a range of researchers in geometric analysis and mathematical physics. Overall this is a carefully written, highly readable book on a very beautiful subject. -Mathematical Reviews The book of J.J. Duistermaat is a nice introduction to analysis related [to the] spin-c Dirac operator. ... The book is almost self contained, [is] readable, and will be useful for anybody who is interested in the topic. -EMS Newsletter The author's book is a marvelous introduction to [these] objects and theories. -Zentralblatt MATH. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Differential equations. 
650 0 |a Geometry, Differential. 
650 0 |a Mathematical analysis. 
650 0 |a Operator theory. 
650 0 |a Mathematical physics. 
650 1 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Differential Equations. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Analysis. 
650 2 4 |a Operator Theory. 
650 2 4 |a Mathematical Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817682484 
776 0 8 |i Printed edition:  |z 9780817682460 
830 0 |a Modern Birkhäuser Classics,  |x 2197-1811 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-8247-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)