Cargando…

Stationary Oscillations of Elastic Plates A Boundary Integral Equation Analysis /

Elliptic partial differential equations are important for approaching many problems in mathematical physics, and boundary integral methods play a significant role in their solution. This monograph investigates the latter as they arise in the theory characterizing stationary vibrations of thin elasti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Thomson, Gavin R. (Autor), Constanda, Christian (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2011.
Edición:1st ed. 2011.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-8241-5
003 DE-He213
005 20220113024746.0
007 cr nn 008mamaa
008 110627s2011 xxu| s |||| 0|eng d
020 |a 9780817682415  |9 978-0-8176-8241-5 
024 7 |a 10.1007/978-0-8176-8241-5  |2 doi 
050 4 |a QA431 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKL  |2 thema 
082 0 4 |a 515.45  |2 23 
100 1 |a Thomson, Gavin R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stationary Oscillations of Elastic Plates  |h [electronic resource] :  |b A Boundary Integral Equation Analysis /  |c by Gavin R. Thomson, Christian Constanda. 
250 |a 1st ed. 2011. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2011. 
300 |a XIII, 230 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- The Mathematical Models -- Layer Potentials -- The Nonhomogenous System -- The Question of Uniqueness for the Exterior Problems -- The Eigenfrequency Spectra of the Interior Problems -- The Question of Solvability -- The Direct Boundary Equation Formulation -- Modified Fundamental Solutions -- Problems with Robin Boundary Conditions -- The Transmission Problem -- The Null Field Equations -- Appendices -- References -- Index. 
520 |a Elliptic partial differential equations are important for approaching many problems in mathematical physics, and boundary integral methods play a significant role in their solution. This monograph investigates the latter as they arise in the theory characterizing stationary vibrations of thin elastic plates. The techniques used reduce the complexity of classical three-dimensional elasticity to a system of two independent variables, using eigenfrequencies to model problems with flexural-vibrational elastic body deformation and simplifying these problems to manageable, uniquely solvable integral equations. In under 250 pages, Stationary Oscillations of Elastic Plates develops an impressive amount of theoretical machinery. After introducing the equations describing the vibrations of elastic plates in the first chapter, the book proceeds to explore topics including the single-layer and double-layer plate potentials; the Newtonian potential; the exterior boundary value problems; the direct boundary integral equation method; the Robin boundary value problems; the boundary-contact problem; the null field equations. Throughout, ample time is allotted to laying the groundwork necessary for establishing the existence and uniqueness of solutions to the problems discussed. The book is meant for readers with a knowledge of advanced calculus and some familiarity with functional analysis. It is a useful tool for professionals in pure and applied mathematicians, as well as for theoretical physicists and mechanical engineers with practices involving elastic plates. Graduate students in these fields would also benefit from the monograph as a supplementary text for courses relating to theories of elasticity or flexural vibrations. 
650 0 |a Integral equations. 
650 0 |a Multibody systems. 
650 0 |a Vibration. 
650 0 |a Mechanics, Applied. 
650 0 |a Mathematical physics. 
650 0 |a Differential equations. 
650 1 4 |a Integral Equations. 
650 2 4 |a Multibody Systems and Mechanical Vibrations. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Differential Equations. 
700 1 |a Constanda, Christian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817682408 
776 0 8 |i Printed edition:  |z 9780817682422 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-8241-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)