Extensions of Moser-Bangert Theory Locally Minimal Solutions /
With the goal of establishing a version for partial differential equations (PDEs) of the Aubry-Mather theory of monotone twist maps, Moser and then Bangert studied solutions of their model equations that possessed certain minimality and monotonicity properties. This monograph presents extensions of...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boston, MA :
Birkhäuser Boston : Imprint: Birkhäuser,
2011.
|
Edición: | 1st ed. 2011. |
Colección: | Progress in Nonlinear Differential Equations and Their Applications,
81 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- 1 Introduction
- Part I: Basic Solutions
- 2 Function Spaces and the First Renormalized Functional
- 3 The Simplest Heteroclinics
- 4 Heteroclinics in x1 and x2
- 5 More Basic Solutions
- Part II: Shadowing Results
- 6 The Simplest Cases
- 7 The Proof of Theorem 6.8
- 8 k-Transition Solutions for k > 2
- 9 Monotone 2-Transition Solutions
- 10 Monotone Multitransition Solutions
- 11 A Mixed Case
- Part III: Solutions of (PDE) Defined on R^2 x T^{n-2}
- 12 A Class of Strictly 1-Monotone Infinite Transition Solutions of (PDE)
- 13 Solutions of (PDE) with Two Transitions in x1 and Heteroclinic Behavior in x2.