Cargando…

Wavelets and Multiscale Analysis Theory and Applications /

Since its emergence as an important research area in the early 1980s, the topic of wavelets has undergone tremendous development on both theoretical and applied fronts. Myriad research and survey papers and monographs have been published on the subject, documenting different areas of applications su...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Cohen, Jonathan (Editor ), Zayed, Ahmed I. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2011.
Edición:1st ed. 2011.
Colección:Applied and Numerical Harmonic Analysis,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-8095-4
003 DE-He213
005 20220116133630.0
007 cr nn 008mamaa
008 110228s2011 xxu| s |||| 0|eng d
020 |a 9780817680954  |9 978-0-8176-8095-4 
024 7 |a 10.1007/978-0-8176-8095-4  |2 doi 
050 4 |a QA403.5-404.5 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.2433  |2 23 
245 1 0 |a Wavelets and Multiscale Analysis  |h [electronic resource] :  |b Theory and Applications /  |c edited by Jonathan Cohen, Ahmed I. Zayed. 
250 |a 1st ed. 2011. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2011. 
300 |a XIV, 338 p. 87 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
505 0 |a Preface -- Contributors -- 1 An Introduction to Wavelets and Multi-scale Analysis: Theory and Applications -- 2 The Construction of Wavelet Sets -- 3 The Measure of the Closure of a Wavelet Set May Be >2pi -- Quincunx Wavelets on T^2 -- Crystallographic Haar-type Composite Dilation Wavelets -- 6 From Full Rank Subdivision Schemes to Multichannel Wavelets: A Constructive Approach -- 7 Unitary Systems and Bessel Generator Multipliers -- 8 The Zak Transform(s) -- 9 Harmonic Analysis of Digital Databases -- 10 Some Recent Advances in Multiscale Geometric Analysis of Point Clouds -- 11 Signal Ensemble Classification Using Low-Dimensional Embeddings and Earth Mover's Distance -- 12 Wavelets on Manifolds and Statistical Applications to Cosmology -- 13 Wavelets, a Numerical Tool for Atmospheric Data Analysis -- 14 Denoising Speech Signals for Digital Hearing Aids: A Wavelet Based Approach -- Index. 
520 |a Since its emergence as an important research area in the early 1980s, the topic of wavelets has undergone tremendous development on both theoretical and applied fronts. Myriad research and survey papers and monographs have been published on the subject, documenting different areas of applications such as sound and image processing, denoising, data compression, tomography, and medical imaging. The study of wavelets remains a very active field of research, and many of its central techniques and ideas have evolved into new and promising research areas. This volume, a collection of invited contributions developed from talks at an international conference on wavelets, features expository and research articles covering current and emerging areas in the theory and applications of wavelets. The book is divided into three parts: Part I is devoted to the mathematical theory of wavelets and features several papers on wavelet sets and the construction of wavelet bases in different settings. Part II looks at the use of multiscale harmonic analysis for understanding the geometry of large data sets and extracting information from them. Part III focuses on applications of wavelet theory to the study of several real-world problems.  Specific topics covered include: wavelets on locally compact groups and Riemannian manifolds;  crystallographic composite dilation wavelets, quincunx and vector-valued  wavelets; multiscale analysis of large data sets; geometric wavelets; wavelets applications in cosmology, atmospheric data analysis and denoising speech signals. Wavelets and Multiscale Analysis: Theory and Applications is an excellent reference for graduate students, researchers, and practitioners in theoretical and applied mathematics, or in engineering. 
650 0 |a Fourier analysis. 
650 0 |a Signal processing. 
650 0 |a Harmonic analysis. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Fourier Analysis. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
700 1 |a Cohen, Jonathan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zayed, Ahmed I.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817680947 
776 0 8 |i Printed edition:  |z 9780817680961 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-8095-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)