Cargando…

Spinors in Four-Dimensional Spaces

Without using the customary Clifford algebras frequently studied in connection with the representations of orthogonal groups, this book gives an elementary introduction to the two-component spinor formalism for four-dimensional spaces with any signature. Some of the useful applications of four-dimen...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Torres del Castillo, Gerardo F. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2010.
Edición:1st ed. 2010.
Colección:Progress in Mathematical Physics, 59
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4984-5
003 DE-He213
005 20220116175510.0
007 cr nn 008mamaa
008 100721s2010 xxu| s |||| 0|eng d
020 |a 9780817649845  |9 978-0-8176-4984-5 
024 7 |a 10.1007/978-0-8176-4984-5  |2 doi 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Torres del Castillo, Gerardo F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spinors in Four-Dimensional Spaces  |h [electronic resource] /  |c by Gerardo F. Torres del Castillo. 
250 |a 1st ed. 2010. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2010. 
300 |a VIII, 177 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematical Physics,  |x 2197-1846 ;  |v 59 
505 0 |a 1 Spinor Algebra.-1.1 Orthogonal Groups.-1.2 Null Tetrads and the Spinor Equivalent of a Tensor.-1.3 Spinorial Representation of the Orthogonal Transformations.-1.3.1 Euclidean Signature.-1.3.2 Lorentzian Signature.-1.3.3 Ultrahyperbolic Signature.-1.4 Reflections.-1.5 Clifford Algebra. Dirac Spinors.-1.6 Inner Products. Mate of a Spinor.-1.7 Principal Spinors. Algebraic Classification.-Exercises.-2 Connection and Curvature.-2.1 Covariant Differentiation -- 2.2 Curvature.-2.2.1 Curvature Spinors.-2.2.2 Algebraic Classification of the Conformal Curvature.-2.3 Conformal Rescalings.-2.4 Killing Vectors. Lie Derivative of Spinors.-Exercises -- 3 Applications to General Relativity.-3.1 Maxwell's Equations.-3.2 Dirac's Equation .-3.3 Einstein's Equations.-3.3.1 The Goldberg-Sachs Theorem.-3.3.2 Space-Times with Symmetries. Ernst Potentials.-3.4 Killing Spinors.-Exercises.-4 Further Applications.-4.1 Self-Dual Yang-Mills Fields.-4.2 H and H H Spaces.-4.3 Killing Bispinors. The Dirac Operator.-Exercises.-A Bases Induced by Coordinate Systems.-References. 
520 |a Without using the customary Clifford algebras frequently studied in connection with the representations of orthogonal groups, this book gives an elementary introduction to the two-component spinor formalism for four-dimensional spaces with any signature. Some of the useful applications of four-dimensional spinors, such as Yang-Mills theory, are derived in detail using illustrative examples. Key topics and features: • Uniform treatment of the spinor formalism for four-dimensional spaces of any signature, not only the usual signature (+ + + −) employed in relativity • Examples taken from Riemannian geometry and special or general relativity are discussed in detail, emphasizing the usefulness of the two-component spinor formalism • Exercises in each chapter • The relationship of Clifford algebras and Dirac four-component spinors is established • Applications of the two-component formalism, focusing mainly on general relativity, are presented in the context of actual computations Spinors in Four-Dimensional Spaces is aimed at graduate students and researchers in mathematical and theoretical physics interested in the applications of the two-component spinor formalism in any four-dimensional vector space or Riemannian manifold with a definite or indefinite metric tensor. This systematic and self-contained book is suitable as a seminar text, a reference book, and a self-study guide. Reviews from the author's previous book, 3-D Spinors, Spin-Weighted Functions and their Applications: In summary...the book gathers much of what can be done with 3-D spinors in an easy-to-read, self-contained form designed for applications that will supplement many available spinor treatments. The book...should be appealing to graduate students and researchers in relativity and mathematical physics. -Mathematical Reviews The present book provides an easy-to-read and unconventional presentation of the spinor formalism for three-dimensional spaces with a definite or indefinite metric...Following a nice and descriptive introduction...the final chapter contains some applications of the formalism to general relativity. -Monatshefte für Mathematik. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Mathematical physics. 
650 0 |a Gravitation. 
650 0 |a Mathematics. 
650 1 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Classical and Quantum Gravity. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817649838 
776 0 8 |i Printed edition:  |z 9780817649852 
830 0 |a Progress in Mathematical Physics,  |x 2197-1846 ;  |v 59 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4984-5  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)