Cargando…

A Mathematical Introduction to Compressive Sensing

At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domai...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Foucart, Simon (Autor), Rauhut, Holger (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Birkhäuser, 2013.
Edición:1st ed. 2013.
Colección:Applied and Numerical Harmonic Analysis,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4948-7
003 DE-He213
005 20220116163618.0
007 cr nn 008mamaa
008 130808s2013 xxu| s |||| 0|eng d
020 |a 9780817649487  |9 978-0-8176-4948-7 
024 7 |a 10.1007/978-0-8176-4948-7  |2 doi 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 003.3  |2 23 
100 1 |a Foucart, Simon.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Mathematical Introduction to Compressive Sensing  |h [electronic resource] /  |c by Simon Foucart, Holger Rauhut. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XVIII, 625 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
505 0 |a 1 An Invitation to Compressive Sensing -- 2 Sparse Solutions of Underdetermined Systems -- 3 Basic Algorithms -- 4 Basis Pursuit -- 5 Coherence -- 6 Restricted Isometry Property -- 7 Basic Tools from Probability Theory -- 8 Advanced Tools from Probability Theory -- 9 Sparse Recovery with Random Matrices -- 10 Gelfand Widths of l1-Balls -- 11 Instance Optimality and Quotient Property -- 12 Random Sampling in Bounded Orthonormal Systems -- 13 Lossless Expanders in Compressive Sensing -- 14 Recovery of Random Signals using Deterministic Matrices -- 15 Algorithms for l1-Minimization -- Appendix A Matrix Analysis -- Appendix B Convex Analysis -- Appendix C Miscellanea -- List of Symbols -- References. 
520 |a At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. Key features include: · The first textbook completely devoted to the topic of compressive sensing · Comprehensive treatment of the subject, including background material from probability theory, detailed proofs of the main theorems, and an outline of possible applications · Numerous exercises designed to help students understand the material · An extensive bibliography with over 500 references that guide researchers through the literature With only moderate prerequisites, A Mathematical Introduction to Compressive Sensing is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. 
650 0 |a Mathematics-Data processing. 
650 0 |a Signal processing. 
650 0 |a Computer science-Mathematics. 
650 0 |a Telecommunication. 
650 0 |a Functional analysis. 
650 1 4 |a Computational Science and Engineering. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Functional Analysis. 
700 1 |a Rauhut, Holger.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817649500 
776 0 8 |i Printed edition:  |z 9781493900633 
776 0 8 |i Printed edition:  |z 9780817649470 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4948-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)