Cargando…

Topics in Operator Semigroups

The theory of operator semigroups was essentially discovered in the early 1930s. Since then, the theory has developed into a rich and exciting area of functional analysis and has been applied to various mathematical topics such as Markov processes, the abstract Cauchy problem, evolution equations, a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kantorovitz, Shmuel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2010.
Edición:1st ed. 2010.
Colección:Progress in Mathematics, 281
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4932-6
003 DE-He213
005 20220114111845.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 |a 9780817649326  |9 978-0-8176-4932-6 
024 7 |a 10.1007/978-0-8176-4932-6  |2 doi 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.724  |2 23 
100 1 |a Kantorovitz, Shmuel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Topics in Operator Semigroups  |h [electronic resource] /  |c by Shmuel Kantorovitz. 
250 |a 1st ed. 2010. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2010. 
300 |a XIV, 266 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 281 
505 0 |a General Theory -- Basic Theory -- The Semi-Simplicity Space for Groups -- Analyticity -- The Semigroup as a Function of its Generator -- Large Parameter -- Boundary Values -- Pre-Semigroups -- Integral Representations -- The Semi-Simplicity Space -- The Laplace#x2013;Stieltjes Space -- Families of Unbounded Symmetric Operators -- A Taste of Applications -- Analytic Families of Evolution Systems -- Similarity. 
520 |a The theory of operator semigroups was essentially discovered in the early 1930s. Since then, the theory has developed into a rich and exciting area of functional analysis and has been applied to various mathematical topics such as Markov processes, the abstract Cauchy problem, evolution equations, and mathematical physics. This self-contained monograph focuses primarily on the theoretical connection between the theory of operator semigroups and spectral theory. Divided into three parts with a total of twelve distinct chapters, this book gives an in-depth account of the subject with numerous examples, detailed proofs, and a brief look at a few applications. Topics include: * The Hille-Yosida and Lumer-Phillips characterizations of semigroup generators * The Trotter-Kato approximation theorem * Kato's unified treatment of the exponential formula and the Trotter product formula * The Hille-Phillips perturbation theorem, and Stone's representation of unitary semigroups * Generalizations of spectral theory's connection to operator semigroups * A natural generalization of Stone's spectral integral representation to a Banach space setting With a collection of miscellaneous exercises at the end of the book and an introductory chapter examining the basic theory involved, this monograph is suitable for second-year graduate students interested in operator semigroups. 
650 0 |a Operator theory. 
650 0 |a Group theory. 
650 0 |a Algebra. 
650 1 4 |a Operator Theory. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817649357 
776 0 8 |i Printed edition:  |z 9780817649319 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 281 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4932-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)