Cargando…

Structural Analysis of Complex Networks

Because of the increasing complexity and growth of real-world networks, their analysis by using classical graph-theoretic methods is oftentimes a difficult procedure. As a result, there is a strong need to combine graph-theoretic methods with mathematical techniques from other scientific disciplines...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Dehmer, Matthias (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2011.
Edición:1st ed. 2011.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4789-6
003 DE-He213
005 20220118084252.0
007 cr nn 008mamaa
008 101029s2011 xxu| s |||| 0|eng d
020 |a 9780817647896  |9 978-0-8176-4789-6 
024 7 |a 10.1007/978-0-8176-4789-6  |2 doi 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
082 0 4 |a 519  |2 23 
245 1 0 |a Structural Analysis of Complex Networks  |h [electronic resource] /  |c edited by Matthias Dehmer. 
250 |a 1st ed. 2011. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2011. 
300 |a XIV, 486 p. 85 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- A Brief Introduction to Complex Networks and Their Analysis -- Partitions of Graphs -- Distance in Graphs -- Domination in Graphs -- Spectrum and Entropy for Infinite Directed Graphs -- Application of Infinite Labeled Graphs to Symbolic Dynamical Systems -- Decompositions and Factorizations of Complete Graphs -- Geodetic Sets in Graphs -- Graph Polynomials and Their Applications I: The Tutte Polynomial -- Graph Polynomials and Their Applications II: Interrelations and Interpretations -- Reconstruction Problems for Graphs, Krawtchouk Polynomials, and Diophantine Equations -- Subgraphs as a Measure of Similarity -- A Chromatic Metric on Graphs -- Some Applications of Eigenvalues of Graphs -- Minimum Spanning Markovian Trees: Introducing Context-Sensitivity Into the Generation of Spanning Trees -- Link-Based Network Mining -- Graph Representations and Algorithms in Computational Biology of RNA Secondary Structure -- Inference of Protein Function from the Structure of Interaction Networks -- Applications of Perfect Matchings in Chemistry -- Index. 
520 |a Because of the increasing complexity and growth of real-world networks, their analysis by using classical graph-theoretic methods is oftentimes a difficult procedure. As a result, there is a strong need to combine graph-theoretic methods with mathematical techniques from other scientific disciplines, such as machine learning and information theory, in order to analyze complex networks more adequately. Filling a gap in literature, this self-contained book presents theoretical and application-oriented results to structurally explore complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Special emphasis is given to methods related to the following areas: * Applications to biology, chemistry, linguistics, and data analysis * Graph colorings * Graph polynomials * Information measures for graphs * Metrical properties of graphs * Partitions and decompositions * Quantitative graph measures Structural Analysis of Complex Networks is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science, machine learning, artificial intelligence, computational and systems biology, cognitive science, computational linguistics, and mathematical chemistry. The book may be used as a supplementary textbook in graduate-level seminars on structural graph analysis, complex networks, or network-based machine learning methods. 
650 0 |a Mathematics. 
650 0 |a Computer science-Mathematics. 
650 0 |a Discrete mathematics. 
650 0 |a Computer networks . 
650 0 |a Bioinformatics. 
650 0 |a Data mining. 
650 1 4 |a Applications of Mathematics. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Discrete Mathematics. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Computational and Systems Biology. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Dehmer, Matthias.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817672430 
776 0 8 |i Printed edition:  |z 9780817647889 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4789-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)