Cargando…

Linear Differential Equations and Group Theory from Riemann to Poincare

This book is a study of how a particular vision of the unity of mathematics, often called geometric function theory, was created in the 19th century. The central focus is on the convergence of three mathematical topics: the hypergeometric and related linear differential equations, group theory, and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gray, Jeremy (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2008.
Edición:2nd ed. 2008.
Colección:Modern Birkhäuser Classics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4773-5
003 DE-He213
005 20220112121747.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780817647735  |9 978-0-8176-4773-5 
024 7 |a 10.1007/978-0-8176-4773-5  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Gray, Jeremy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Linear Differential Equations and Group Theory from Riemann to Poincare  |h [electronic resource] /  |c by Jeremy Gray. 
250 |a 2nd ed. 2008. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2008. 
300 |a XX, 338 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modern Birkhäuser Classics,  |x 2197-1811 
505 0 |a Hypergeometric Equations -- Lazarus Fuchs -- Algebraic Solutions to a Differential Equation -- Modular Equations -- Some Algebraic Curves -- Automorphic Functions. 
520 |a This book is a study of how a particular vision of the unity of mathematics, often called geometric function theory, was created in the 19th century. The central focus is on the convergence of three mathematical topics: the hypergeometric and related linear differential equations, group theory, and on-Euclidean geometry. The text for this second edition has been greatly expanded and revised, and the existing appendices enriched with historical accounts of the Riemann-Hilbert problem, the uniformization theorem, Picard-Vessiot theory, and the hypergeometric equation in higher dimensions. The exercises have been retained, making it possible to use the book as a companion to mathematics courses at the graduate level. "If you want to know what mathematicians like Gauss, Euler and Dirichlet were doing...this book could be for you. It fills in many historical gaps, in a story which is largely unknown...This book is the result of work done by a serious historian of mathematics...If you are intrigued by such topics studied years ago but now largely forgotten...then read this book."--The Mathematical Gazette (on the second edition) "One among the most interesting books on the history of mathematics... Very stimulating reading for both historians of modern mathematics and mathematicians as well."--Mathematical Reviews (on the first edition) "The book contains an amazing wealth of material relating to the algebra, geometry, and analysis of the nineteenth century.... Written with accurate historical perspective and clear exposition, this book is truly hard to put down."--Zentralblatt fur Mathematik (review of 1st edition). 
650 0 |a Geometry. 
650 0 |a Functional analysis. 
650 0 |a Mathematics. 
650 0 |a History. 
650 0 |a Group theory. 
650 0 |a Differential equations. 
650 0 |a Functions of complex variables. 
650 1 4 |a Geometry. 
650 2 4 |a Functional Analysis. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Differential Equations. 
650 2 4 |a Functions of a Complex Variable. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817647728 
776 0 8 |i Printed edition:  |z 9780817638375 
830 0 |a Modern Birkhäuser Classics,  |x 2197-1811 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4773-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)