Cargando…

Developments and Trends in Infinite-Dimensional Lie Theory

This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Neeb, Karl-Hermann (Editor ), Pianzola, Arturo (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2011.
Edición:1st ed. 2011.
Colección:Progress in Mathematics, 288
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4741-4
003 DE-He213
005 20220116164654.0
007 cr nn 008mamaa
008 101029s2011 xxu| s |||| 0|eng d
020 |a 9780817647414  |9 978-0-8176-4741-4 
024 7 |a 10.1007/978-0-8176-4741-4  |2 doi 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
245 1 0 |a Developments and Trends in Infinite-Dimensional Lie Theory  |h [electronic resource] /  |c edited by Karl-Hermann Neeb, Arturo Pianzola. 
250 |a 1st ed. 2011. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2011. 
300 |a VIII, 492 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 288 
505 0 |a Preface -- Part A: Infinite-Dimensional Lie (Super-)Algebras -- Isotopy for Extended Affine Lie Algebras and Lie Tori -- Remarks on the Isotriviality of Multiloop Algebras -- Extended Affine Lie Algebras and Other Generalizations of Affine Lie Algebras - A Survey -- Tensor Representations of Classical Locally Finite Lie Algebras -- Lie Algebras, Vertex Algebras, and Automorphic Forms -- Kac-Moody Superalgebras and Integrability -- Part B: Geometry of Infinite-Dimensional Lie (Transformation) Groups -- Jordan Structures and Non-Associative Geometry -- Direct Limits of Infinite-Dimensional Lie Groups -- Lie Groups of Bundle Automorphisms and Their Extensions -- Gerbes and Lie Groups -- Part C: Representation Theory of Infinite-Dimensional Lie Groups Functional Analytic Background for a Theory of Infinite- Dimensional Reductive Lie Groups -- Heat Kernel Measures and Critical Limits -- Coadjoint Orbits and the Beginnings of a Geometric Representation Theory -- Infinite-Dimensional Multiplicity-Free Spaces I: Limits of Compact Commutative Spaces -- Index. 
520 |a This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups. Part (A) is mainly concerned with the structure and representation theory of infinite-dimensional Lie algebras and contains articles on the structure of direct-limit Lie algebras, extended affine Lie algebras and loop algebras, as well as representations of loop algebras and Kac-Moody superalgebras. The articles in Part (B) examine connections between infinite-dimensional Lie theory and geometry. The topics range from infinite-dimensional groups acting on fiber bundles, corresponding characteristic classes and gerbes, to Jordan-theoretic geometries and new results on direct-limit groups. The analytic representation theory of infinite-dimensional Lie groups is still very much underdeveloped. The articles in Part (C) develop new, promising methods based on heat kernels, multiplicity freeness, Banach-Lie-Poisson spaces, and infinite-dimensional generalizations of reductive Lie groups. Contributors: B. Allison, D. Beltiţă, W. Bertram, J. Faulkner, Ph. Gille, H. Glöckner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Group theory. 
650 0 |a Algebra. 
650 0 |a Geometry. 
650 0 |a Algebraic geometry. 
650 1 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebra. 
650 2 4 |a Geometry. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Neeb, Karl-Hermann.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Pianzola, Arturo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817647407 
776 0 8 |i Printed edition:  |z 9780817672331 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 288 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4741-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)