Cargando…

Self-adjoint Extensions in Quantum Mechanics General Theory and Applications to Schrödinger and Dirac Equations with Singular Potentials /

Quantization of physical systems requires a correct definition of quantum-mechanical observables, such as the Hamiltonian, momentum, etc., as self-adjoint operators in appropriate Hilbert spaces and their spectral analysis.  Though a "naïve"  treatment exists for dealing with such problem...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gitman, D.M (Autor), Tyutin, I.V (Autor), Voronov, B.L (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2012.
Edición:1st ed. 2012.
Colección:Progress in Mathematical Physics, 62
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Introduction
  • Linear Operators in Hilbert Spaces
  • Basics of Theory of s.a. Extensions of Symmetric Operators
  • Differential Operators
  • Spectral Analysis of s.a. Operators
  • Free One-Dimensional Particle on an Interval
  • One-Dimensional Particle in Potential Fields
  • Schrödinger Operators with Exactly Solvable Potentials
  • Dirac Operator with Coulomb Field
  • Schrödinger and Dirac Operators with Aharonov-Bohm and Magnetic-Solenoid Fields.