Cargando…

Self-adjoint Extensions in Quantum Mechanics General Theory and Applications to Schrödinger and Dirac Equations with Singular Potentials /

Quantization of physical systems requires a correct definition of quantum-mechanical observables, such as the Hamiltonian, momentum, etc., as self-adjoint operators in appropriate Hilbert spaces and their spectral analysis.  Though a "naïve"  treatment exists for dealing with such problem...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gitman, D.M (Autor), Tyutin, I.V (Autor), Voronov, B.L (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2012.
Edición:1st ed. 2012.
Colección:Progress in Mathematical Physics, 62
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4662-2
003 DE-He213
005 20220117151725.0
007 cr nn 008mamaa
008 120427s2012 xxu| s |||| 0|eng d
020 |a 9780817646622  |9 978-0-8176-4662-2 
024 7 |a 10.1007/978-0-8176-4662-2  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Gitman, D.M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Self-adjoint Extensions in Quantum Mechanics  |h [electronic resource] :  |b General Theory and Applications to Schrödinger and Dirac Equations with Singular Potentials /  |c by D.M. Gitman, I.V. Tyutin, B.L. Voronov. 
250 |a 1st ed. 2012. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a XIII, 511 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematical Physics,  |x 2197-1846 ;  |v 62 
505 0 |a Introduction -- Linear Operators in Hilbert Spaces -- Basics of Theory of s.a. Extensions of Symmetric Operators -- Differential Operators -- Spectral Analysis of s.a. Operators -- Free One-Dimensional Particle on an Interval -- One-Dimensional Particle in Potential Fields -- Schrödinger Operators with Exactly Solvable Potentials -- Dirac Operator with Coulomb Field -- Schrödinger and Dirac Operators with Aharonov-Bohm and Magnetic-Solenoid Fields. 
520 |a Quantization of physical systems requires a correct definition of quantum-mechanical observables, such as the Hamiltonian, momentum, etc., as self-adjoint operators in appropriate Hilbert spaces and their spectral analysis.  Though a "naïve"  treatment exists for dealing with such problems, it is based on finite-dimensional algebra or even infinite-dimensional algebra with bounded operators, resulting in paradoxes and inaccuracies.   A proper treatment of these problems requires invoking certain nontrivial notions and theorems from functional analysis concerning the theory of unbounded self-adjoint operators and the theory of self-adjoint extensions of symmetric operators. Self-adjoint Extensions in Quantum Mechanics begins by considering quantization problems in general, emphasizing the nontriviality of consistent operator construction by presenting paradoxes of the naïve treatment.  The necessary mathematical background is then built by developing the theory of self-adjoint extensions.  Through examination of  various quantum-mechanical systems, the authors show how quantization problems associated with the correct definition of observables and their spectral analysis can be treated consistently for comparatively simple quantum-mechanical systems.  Systems that are examined include free particles on an interval, particles in a number of potential fields including delta-like potentials, the one-dimensional Calogero problem, the Aharonov-Bohm problem, and the relativistic Coulomb problem. This well-organized text is most suitable for graduate students and postgraduates interested in deepening their understanding of mathematical problems in quantum mechanics beyond the scope of those treated in standard textbooks.  The book may also serve as a useful resource for mathematicians and researchers in mathematical and theoretical physics. 
650 0 |a Mathematical physics. 
650 0 |a Operator theory. 
650 0 |a Quantum physics. 
650 0 |a Mathematics. 
650 1 4 |a Mathematical Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Tyutin, I.V.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Voronov, B.L.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817644000 
776 0 8 |i Printed edition:  |z 9780817671884 
830 0 |a Progress in Mathematical Physics,  |x 2197-1846 ;  |v 62 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4662-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)