Cargando…

Fuchsian Reduction Applications to Geometry, Cosmology and Mathematical Physics /

Fuchsian reduction is a method for representing solutions of nonlinear PDEs near singularities. The technique has multiple applications including soliton theory, Einstein's equations and cosmology, stellar models, laser collapse, conformal geometry and combustion. Developed in the 1990s for sem...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kichenassamy, Satyanad (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2007.
Edición:1st ed. 2007.
Colección:Progress in Nonlinear Differential Equations and Their Applications, 71
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4637-0
003 DE-He213
005 20220117013514.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780817646370  |9 978-0-8176-4637-0 
024 7 |a 10.1007/978-0-8176-4637-0  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Kichenassamy, Satyanad.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fuchsian Reduction  |h [electronic resource] :  |b Applications to Geometry, Cosmology and Mathematical Physics /  |c by Satyanad Kichenassamy. 
250 |a 1st ed. 2007. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2007. 
300 |a XV, 289 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 2374-0280 ;  |v 71 
505 0 |a Fuchsian Reduction -- Formal Series -- General Reduction Methods -- Theory of Fuchsian Partial Di?erential Equations -- Convergent Series Solutions of Fuchsian Initial-Value Problems -- Fuchsian Initial-Value Problems in Sobolev Spaces -- Solution of Fuchsian Elliptic Boundary-Value Problems -- Applications -- Applications in Astronomy -- Applications in General Relativity -- Applications in Differential Geometry -- Applications to Nonlinear Waves -- Boundary Blowup for Nonlinear Elliptic Equations -- Background Results -- Distance Function and Hölder Spaces -- Nash-Moser Inverse Function Theorem. 
520 |a Fuchsian reduction is a method for representing solutions of nonlinear PDEs near singularities. The technique has multiple applications including soliton theory, Einstein's equations and cosmology, stellar models, laser collapse, conformal geometry and combustion. Developed in the 1990s for semilinear wave equations, Fuchsian reduction research has grown in response to those problems in pure and applied mathematics where numerical computations fail. This work unfolds systematically in four parts, interweaving theory and applications. The case studies examined in Part III illustrate the impact of reduction techniques, and may serve as prototypes for future new applications. In the same spirit, most chapters include a problem section. Background results and solutions to selected problems close the volume. This book can be used as a text in graduate courses in pure or applied analysis, or as a resource for researchers working with singularities in geometry and mathematical physics. 
650 0 |a Geometry. 
650 0 |a Differential equations. 
650 0 |a Mathematics. 
650 0 |a Geometry, Differential. 
650 0 |a Mathematical physics. 
650 0 |a Solar system. 
650 1 4 |a Geometry. 
650 2 4 |a Differential Equations. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Space Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817670740 
776 0 8 |i Printed edition:  |z 9780817643522 
830 0 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 2374-0280 ;  |v 71 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4637-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)