Cargando…

Selfdual Gauge Field Vortices An Analytical Approach /

In modern theoretical physics, gauge field theories are of great importance since they keep internal symmetries and account for phenomena such as spontaneous symmetry breaking, the quantum Hall effect, charge fractionalization, superconductivity and supergravity. This monograph discusses specific ex...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tarantello, Gabriella (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2008.
Edición:1st ed. 2008.
Colección:Progress in Nonlinear Differential Equations and Their Applications, 72
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4608-0
003 DE-He213
005 20220112120356.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780817646080  |9 978-0-8176-4608-0 
024 7 |a 10.1007/978-0-8176-4608-0  |2 doi 
050 4 |a Q1-390 
072 7 |a P  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
072 7 |a P  |2 thema 
082 0 4 |a 500  |2 23 
100 1 |a Tarantello, Gabriella.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Selfdual Gauge Field Vortices  |h [electronic resource] :  |b An Analytical Approach /  |c by Gabriella Tarantello. 
250 |a 1st ed. 2008. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2008. 
300 |a XIV, 325 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 2374-0280 ;  |v 72 
505 0 |a Selfdual Gauge Field Theories -- Elliptic Problems in the Study of Selfdual Vortex Configurations -- Planar Selfdual Chern-Simons Vortices -- Periodic Selfdual Chern-Simons Vortices -- The Analysis of Liouville-Type Equations With Singular Sources -- Mean Field Equations of Liouville-Type -- Selfdual Electroweak Vortices and Strings. 
520 |a In modern theoretical physics, gauge field theories are of great importance since they keep internal symmetries and account for phenomena such as spontaneous symmetry breaking, the quantum Hall effect, charge fractionalization, superconductivity and supergravity. This monograph discusses specific examples of gauge field theories that exhibit a selfdual structure. The author builds a foundation for gauge theory and selfdual vortices by introducing the basic mathematical language of the subject and formulating examples ranging from the well-known abelian-Higgs and Yang-Mills models to the Chern-Simons-Higgs theories (in both the abelian and non-abelian settings). Thereafter, the electroweak theory and self-gravitating electroweak strings are also examined, followed by the study of the differential problems that have emerged from the analysis of selfdual vortex configurations; in this regard the author treats elliptic problems involving exponential non-linearities, also in relation to concentration-compactness principles and blow-up analysis. Many open questions still remain in the field and are examined in this comprehensive work in connection with Liouville-type equations and systems. The goal of this text is to form an understanding of selfdual solutions arising in a variety of physical contexts. Selfdual Gauge Field Vortices: An Analytical Approach is ideal for graduate students and researchers interested in partial differential equations and mathematical physics. 
650 0 |a Physics. 
650 0 |a Astronomy. 
650 0 |a Differential equations. 
650 0 |a Quantum physics. 
650 0 |a Mathematical physics. 
650 1 4 |a Physics and Astronomy. 
650 2 4 |a Differential Equations. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817671501 
776 0 8 |i Printed edition:  |z 9780817643102 
830 0 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 2374-0280 ;  |v 72 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4608-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)