Cargando…

From Geometry to Quantum Mechanics In Honor of Hideki Omori /

This volume is composed of invited expository articles by well-known mathematicians in differential geometry and mathematical physics that have been arranged in celebration of Hideki Omori's recent retirement from Tokyo University of Science and in honor of his fundamental contributions to thes...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Maeda, Yoshiaki (Editor ), Michor, Peter (Editor ), Ochiai, Takushiro (Editor ), Yoshioka, Akira (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2007.
Edición:1st ed. 2007.
Colección:Progress in Mathematics, 252
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4530-4
003 DE-He213
005 20220118104355.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780817645304  |9 978-0-8176-4530-4 
024 7 |a 10.1007/978-0-8176-4530-4  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
245 1 0 |a From Geometry to Quantum Mechanics  |h [electronic resource] :  |b In Honor of Hideki Omori /  |c edited by Yoshiaki Maeda, Peter Michor, Takushiro Ochiai, Akira Yoshioka. 
250 |a 1st ed. 2007. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2007. 
300 |a XVII, 324 p. 7 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 252 
505 0 |a Global Analysis and Infinite-Dimensional Lie Groups -- Aspects of Stochastic Global Analysis -- A Lie Group Structure for Automorphisms of a Contact Weyl Manifold -- Riemannian Geometry -- Projective Structures of a Curve in a Conformal Space -- Deformations of Surfaces Preserving Conformal or Similarity Invariants -- Global Structures of Compact Conformally Flat Semi-Symmetric Spaces of Dimension 3 and of Non-Constant Curvature -- Differential Geometry of Analytic Surfaces with Singularities -- Symplectic Geometry and Poisson Geometry -- The Integration Problem for Complex Lie Algebroids -- Reduction, Induction and Ricci Flat Symplectic Connections -- Local Lie Algebra Determines Base Manifold -- Lie Algebroids Associated with Deformed Schouten Bracket of 2-Vector Fields -- Parabolic Geometries Associated with Differential Equations of Finite Type -- Quantizations and Noncommutative Geometry -- Toward Geometric Quantum Theory -- Resonance Gyrons and Quantum Geometry -- A Secondary Invariant of Foliated Spaces and Type III? von Neumann Algebras -- The Geometry of Space-Time and Its Deformations from a Physical Perspective -- Geometric Objects in an Approach to Quantum Geometry. 
520 |a This volume is composed of invited expository articles by well-known mathematicians in differential geometry and mathematical physics that have been arranged in celebration of Hideki Omori's recent retirement from Tokyo University of Science and in honor of his fundamental contributions to these areas. The papers focus on recent trends and future directions in symplectic and Poisson geometry, global analysis, infinite-dimensional Lie group theory, quantizations and noncommutative geometry, as well as applications of partial differential equations and variational methods to geometry. These articles will appeal to graduate students in mathematics and quantum mechanics, as well as researchers, differential geometers, and mathematical physicists. Contributors include: M. Cahen, D. Elworthy, A. Fujioka, M. Goto, J. Grabowski, S. Gutt, J. Inoguchi, M. Karasev, O. Kobayashi, Y. Maeda, K. Mikami, N. Miyazaki, T. Mizutani, H. Moriyoshi, H. Omori, T. Sasai, D. Sternheimer, A. Weinstein, K. Yamaguchi, T. Yatsui, and A. Yoshioka. 
650 0 |a Geometry, Differential. 
650 0 |a Geometry. 
650 0 |a Mathematical analysis. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Mathematical physics. 
650 0 |a Quantum physics. 
650 1 4 |a Differential Geometry. 
650 2 4 |a Geometry. 
650 2 4 |a Analysis. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Quantum Physics. 
700 1 |a Maeda, Yoshiaki.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Michor, Peter.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ochiai, Takushiro.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Yoshioka, Akira.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817671327 
776 0 8 |i Printed edition:  |z 9780817645120 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 252 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4530-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)