Cargando…

An Invitation to Quantum Cohomology Kontsevich's Formula for Rational Plane Curves /

This book is an elementary introduction to stable maps and quantum cohomology, starting with an introduction to stable pointed curves, and culminating with a proof of the associativity of the quantum product. The viewpoint is mostly that of enumerative geometry, and the red thread of the exposition...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kock, Joachim (Autor), Vainsencher, Israel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2007.
Edición:1st ed. 2007.
Colección:Progress in Mathematics, 249
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4495-6
003 DE-He213
005 20220116153452.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780817644956  |9 978-0-8176-4495-6 
024 7 |a 10.1007/978-0-8176-4495-6  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Kock, Joachim.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Invitation to Quantum Cohomology  |h [electronic resource] :  |b Kontsevich's Formula for Rational Plane Curves /  |c by Joachim Kock, Israel Vainsencher. 
250 |a 1st ed. 2007. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2007. 
300 |a XIV, 162 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 249 
505 0 |a Prologue: Warming Up with Cross Ratios, and the Definition of Moduli Space -- Stable n-pointed Curves -- Stable Maps -- Enumerative Geometry via Stable Maps -- Gromov-Witten Invariants -- Quantum Cohomology. 
520 |a This book is an elementary introduction to stable maps and quantum cohomology, starting with an introduction to stable pointed curves, and culminating with a proof of the associativity of the quantum product. The viewpoint is mostly that of enumerative geometry, and the red thread of the exposition is the problem of counting rational plane curves. Kontsevich's formula is initially established in the framework of classical enumerative geometry, then as a statement about reconstruction for Gromov-Witten invariants, and finally, using generating functions, as a special case of the associativity of the quantum product. Emphasis is given throughout the exposition to examples, heuristic discussions, and simple applications of the basic tools to best convey the intuition behind the subject. The book demystifies these new quantum techniques by showing how they fit into classical algebraic geometry. Some familiarity with basic algebraic geometry and elementary intersection theory is assumed. Each chapter concludes with some historical comments and an outline of key topics and themes as a guide for further study, followed by a collection of exercises that complement the material covered and reinforce computational skills. As such, the book is ideal for self-study, as a text for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory. The book will prove equally useful to graduate students in the classroom setting as to researchers in geometry and physics who wish to learn about the subject. 
650 0 |a Algebraic geometry. 
650 0 |a K-theory. 
650 0 |a Mathematical physics. 
650 0 |a Algebraic topology. 
650 0 |a Geometry. 
650 0 |a Mathematics. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a K-Theory. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Geometry. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Vainsencher, Israel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817671129 
776 0 8 |i Printed edition:  |z 9780817644567 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 249 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4495-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)