Cargando…

Dirac Operators in Representation Theory

This monograph presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Dirac operators are widely used in physics, differential geometry, and group-theoretic settings (particularly, the geometric construction of discrete series representations). The related...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Huang, Jing-Song (Autor), Pandzic, Pavle (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2006.
Edición:1st ed. 2006.
Colección:Mathematics: Theory & Applications
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4493-2
003 DE-He213
005 20220113004359.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817644932  |9 978-0-8176-4493-2 
024 7 |a 10.1007/978-0-8176-4493-2  |2 doi 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Huang, Jing-Song.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dirac Operators in Representation Theory  |h [electronic resource] /  |c by Jing-Song Huang, Pavle Pandzic. 
250 |a 1st ed. 2006. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2006. 
300 |a XII, 200 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics: Theory & Applications 
505 0 |a Lie Groups, Lie Algebras and Representations -- Clifford Algebras and Spinors -- Dirac Operators in the Algebraic Setting -- A Generalized Bott-Borel-Weil Theorem -- Cohomological Induction -- Properties of Cohomologically Induced Modules -- Discrete Series -- Dimensions of Spaces of Automorphic Forms -- Dirac Operators and Nilpotent Lie Algebra Cohomology -- Dirac Cohomology for Lie Superalgebras. 
520 |a This monograph presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Dirac operators are widely used in physics, differential geometry, and group-theoretic settings (particularly, the geometric construction of discrete series representations). The related concept of Dirac cohomology, which is defined using Dirac operators, is a far-reaching generalization that connects index theory in differential geometry to representation theory. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. Key topics covered include: * Proof of Vogan's conjecture on Dirac cohomology * Simple proofs of many classical theorems, such as the Bott-Borel-Weil theorem and the Atiyah-Schmid theorem * Dirac cohomology, defined by Kostant's cubic Dirac operator, along with other closely related kinds of cohomology, such as n-cohomology and (g,K)-cohomology * Cohomological parabolic induction and $A_q(\lambda)$ modules * Discrete series theory, characters, existence and exhaustion * Sharpening of the Langlands formula on multiplicity of automorphic forms, with applications * Dirac cohomology for Lie superalgebras An excellent contribution to the mathematical literature of representation theory, this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Group theory. 
650 0 |a Geometry, Differential. 
650 0 |a Operator theory. 
650 0 |a Mathematical physics. 
650 1 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Operator Theory. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Pandzic, Pavle.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817670320 
776 0 8 |i Printed edition:  |z 9780817632182 
830 0 |a Mathematics: Theory & Applications 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-8176-4493-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)