Cargando…

Modern Differential Geometry in Gauge Theories Maxwell Fields, Volume I /

Differential geometry, in the classical sense, is developed through the theory of smooth manifolds. Modern differential geometry from the author's perspective is used in this work to describe physical theories of a geometric character without using any notion of calculus (smoothness). Instead,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mallios, Anastasios (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2006.
Edición:1st ed. 2006.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4474-1
003 DE-He213
005 20220119144437.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817644741  |9 978-0-8176-4474-1 
024 7 |a 10.1007/0-8176-4474-1  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Mallios, Anastasios.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Modern Differential Geometry in Gauge Theories  |h [electronic resource] :  |b Maxwell Fields, Volume I /  |c by Anastasios Mallios. 
250 |a 1st ed. 2006. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2006. 
300 |a XVII, 293 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Maxwell Fields: General Theory -- The Rudiments of Abstract Differential Geometry -- Elementary Particles: Sheaf-Theoretic Classification, by Spin-Structure, According to Selesnick's Correspondence Principle -- Electromagnetism -- Cohomological Classification of Maxwell and Hermitian Maxwell Fields -- Geometric Prequantization. 
520 |a Differential geometry, in the classical sense, is developed through the theory of smooth manifolds. Modern differential geometry from the author's perspective is used in this work to describe physical theories of a geometric character without using any notion of calculus (smoothness). Instead, an axiomatic treatment of differential geometry is presented via sheaf theory (geometry) and sheaf cohomology (analysis). Using vector sheaves, in place of bundles, based on arbitrary topological spaces, this unique approach in general furthers new perspectives and calculations that generate unexpected potential applications. Modern Differential Geometry in Gauge Theories is a two-volume research monograph that systematically applies a sheaf-theoretic approach to such physical theories as gauge theory. Beginning with Volume 1, the focus is on Maxwell fields. All the basic concepts of this mathematical approach are formulated and used thereafter to describe elementary particles, electromagnetism, and geometric prequantization. Maxwell fields are fully examined and classified in the language of sheaf theory and sheaf cohomology. Continuing in Volume 2, this sheaf-theoretic approach is applied to Yang-Mills fields in general. The text contains a wealth of detailed and rigorous computations and will appeal to mathematicians and physicists, along with advanced undergraduate and graduate students, interested in applications of differential geometry to physical theories such as general relativity, elementary particle physics and quantum gravity. 
650 0 |a Geometry, Differential. 
650 0 |a Mathematical physics. 
650 0 |a Algebraic fields. 
650 0 |a Polynomials. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 0 |a Electrodynamics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Differential Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Classical Electrodynamics. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817670900 
776 0 8 |i Printed edition:  |z 9780817643782 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-8176-4474-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)