Cargando…

Point Process Theory and Applications Marked Point and Piecewise Deterministic Processes /

This text offers a mathematically rigorous exposition of the basic theory of marked point processes developing randomly over time, and shows how this theory may be used to treat piecewise deterministic stochastic processes in continuous time. The focus is on point processes that generate only finite...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jacobsen, Martin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2006.
Edición:1st ed. 2006.
Colección:Probability and Its Applications,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4463-5
003 DE-He213
005 20220114011011.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817644635  |9 978-0-8176-4463-5 
024 7 |a 10.1007/0-8176-4463-6  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Jacobsen, Martin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Point Process Theory and Applications  |h [electronic resource] :  |b Marked Point and Piecewise Deterministic Processes /  |c by Martin Jacobsen. 
250 |a 1st ed. 2006. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2006. 
300 |a XII, 328 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability and Its Applications,  |x 2297-0398 
505 0 |a Theory -- Simple and Marked Point Processes -- Construction of SPPs and MPPs -- Compensators and Martingales -- Likelihood Processes -- Independence -- Piecewise Deterministic Markov Processes -- Applications -- The Basic Models from Survival Analysis -- Branching, Ruin, Soccer -- A Model from Finance -- Examples of Queueing Models -- Appendices -- Differentiation of Cadlag Functions -- Filtrations, Processes, Martingales. 
520 |a This text offers a mathematically rigorous exposition of the basic theory of marked point processes developing randomly over time, and shows how this theory may be used to treat piecewise deterministic stochastic processes in continuous time. The focus is on point processes that generate only finitely many points in finite time intervals, resulting in piecewise deterministic processes with "few jumps". The point processes are constructed from scratch with detailed proofs and their distributions characterized using compensating measures and martingale structures. Piecewise deterministic processes are defined and identified with certain marked point processes, which are then used in particular to construct and study a large class of piecewise deterministic Markov processes, whether time homogeneous or not. The second part of the book addresses applications of the just developed theory. This analysis of various models in applied statistics and probability includes examples and exercises in survival analysis, branching processes, ruin probabilities, sports (soccer), finance and risk management (arbitrage and portfolio trading strategies), and queueing theory. Graduate students and researchers interested in probabilistic modeling and its applications will find this text an excellent resource, requiring for mastery a solid foundation in probability theory, measure and integration, as well as some knowledge of stochastic processes and martingales. However, an explanatory introduction to each chapter highlights those portions that are crucial and those that can be omitted by non-specialists, making the material more accessible to a wider cross-disciplinary audience. 
650 0 |a Probabilities. 
650 0 |a Mathematics. 
650 0 |a Statistics . 
650 0 |a Measure theory. 
650 0 |a Mathematical optimization. 
650 0 |a Social sciences-Mathematics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Optimization. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817670566 
776 0 8 |i Printed edition:  |z 9780817642150 
830 0 |a Probability and Its Applications,  |x 2297-0398 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-8176-4463-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)