Cargando…

Approximation Theory From Taylor Polynomials to Wavelets /

This concisely written book gives an elementary introduction to a classical area of mathematics-approximation theory-in a way that naturally leads to the modern field of wavelets. The exposition, driven by ideas rather than technical details and proofs, demonstrates the dynamic nature of mathematics...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Christensen, Ole (Autor), Christensen, Khadija Laghrida (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2005.
Edición:1st ed. 2005.
Colección:Applied and Numerical Harmonic Analysis,
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • 1 Approximation with Polynomials
  • 1.1 Approximation of a function on an interval
  • 1.2 Weierstrass' theorem
  • 1.3 Taylor's theorem
  • 1.4 Exercises
  • 2 Infinite Series
  • 2.1 Infinite series of numbers
  • 2.2 Estimating the sum of an infinite series
  • 2.3 Geometric series
  • 2.4 Power series
  • 2.5 General infinite sums of functions
  • 2.6 Uniform convergence
  • 2.7 Signal transmission
  • 2.8 Exercises
  • 3 Fourier Analysis
  • 3.1 Fourier series
  • 3.2 Fourier's theorem and approximation
  • 3.3 Fourier series and signal analysis
  • 3.4 Fourier series and Hilbert spaces
  • 3.5 Fourier series in complex form
  • 3.6 Parseval's theorem
  • 3.7 Regularity and decay of the Fourier coefficients
  • 3.8 Best N-term approximation
  • 3.9 The Fourier transform
  • 3.10 Exercises
  • 4 Wavelets and Applications
  • 4.1 About wavelet systems
  • 4.2 Wavelets and signal processing
  • 4.3 Wavelets and fingerprints
  • 4.4 Wavelet packets
  • 4.5 Alternatives to wavelets: Gabor systems
  • 4.6 Exercises
  • 5 Wavelets and their Mathematical Properties
  • 5.1 Wavelets and L2 (?)
  • 5.2 Multiresolution analysis
  • 5.3 The role of the Fourier transform
  • 5.4 The Haar wavelet
  • 5.5 The role of compact support
  • 5.6 Wavelets and singularities
  • 5.7 Best N-term approximation
  • 5.8 Frames
  • 5.9 Gabor systems
  • 5.10 Exercises
  • Appendix A
  • A.1 Definitions and notation
  • A.2 Proof of Weierstrass' theorem
  • A.3 Proof of Taylor's theorem
  • A.4 Infinite series
  • A.5 Proof of Theorem 3 7 2
  • Appendix B
  • B.1 Power series
  • B.2 Fourier series for 2?-periodic functions
  • List of Symbols
  • References.