Cargando…

Introduction to Plane Algebraic Curves

This work treats an introduction to commutative ring theory and algebraic plane curves, requiring of the student only a basic knowledge of algebra, with all of the algebraic facts collected into several appendices that can be easily referred to, as needed. Kunz's proven conception of teaching t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kunz, Ernst (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2005.
Edición:1st ed. 2005.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4443-7
003 DE-He213
005 20220118204809.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644437  |9 978-0-8176-4443-7 
024 7 |a 10.1007/0-8176-4443-1  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Kunz, Ernst.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Plane Algebraic Curves  |h [electronic resource] /  |c by Ernst Kunz. 
250 |a 1st ed. 2005. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2005. 
300 |a XIV, 294 p. 52 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Plane Algebraic Curves -- Ane Algebraic Curves -- Projective Algebraic Curves -- The Coordinate Ring of an Algebraic Curve and the Intersections of Two Curves -- Rational Functions on Algebraic Curves -- Intersection Multiplicity and Intersection Cycle of Two Curves -- Regular and Singular Points of Algebraic Curves. Tangents -- More on Intersection Theory. Applications -- Rational Maps. Parametric Representations of Curves -- Polars and Hessians of Algebraic Curves -- Elliptic Curves -- Residue Calculus -- Applications of Residue Theory to Curves -- The Riemann-Roch Theorem -- The Genus of an Algebraic Curve and of Its Function Field -- The Canonical Divisor Class -- The Branches of a Curve Singularity -- Conductor and Value Semigroup of a Curve Singularity. 
520 |a This work treats an introduction to commutative ring theory and algebraic plane curves, requiring of the student only a basic knowledge of algebra, with all of the algebraic facts collected into several appendices that can be easily referred to, as needed. Kunz's proven conception of teaching topics in commutative algebra together with their applications to algebraic geometry makes this book significantly different from others on plane algebraic curves. The exposition focuses on the purely algebraic aspects of plane curve theory, leaving the topological and analytical viewpoints in the background, with only casual references to these subjects and suggestions for further reading. Most important to this text: * Emphasizes and utilizes the theory of filtered algebras, their graduated rings and Rees algebras, to deduce basic facts about the intersection theory of plane curves * Presents residue theory in the affine plane and its applications to intersection theory * Methods of proof for the Riemann-Roch theorem conform to the presentation of curve theory, formulated in the language of filtrations and associated graded rings * Examples, exercises, figures and suggestions for further study round out this fairly self-contained textbook From a review of the German edition: "[T]he reader is invited to learn some topics from commutative ring theory by mainly studying their illustrations and applications in plane curve theory. This methodical approach is certainly very enlightening and efficient for both teachers and students... The whole text is a real masterpiece of clarity, rigor, comprehension, methodical skill, algebraic and geometric motivation...highly enlightening, motivating and entertaining at the same time... One simply cannot do better in writing such a textbook." -Zentralblatt MATH . 
650 0 |a Algebraic geometry. 
650 0 |a Algebraic topology. 
650 0 |a Mathematics. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Associative rings. 
650 0 |a Associative algebras. 
650 0 |a Algebraic fields. 
650 0 |a Polynomials. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Field Theory and Polynomials. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817670924 
776 0 8 |i Printed edition:  |z 9780817643812 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-8176-4443-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)