Cargando…

Advanced Real Analysis

Basic Real Analysis and Advanced Real Analysis (available separately or together as a Set) systematically develop those concepts and tools in real analysis that are vital to every mathematician, whether pure or applied, aspiring or established. These works present a comprehensive treatment with a gl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Knapp, Anthony W. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2005.
Edición:1st ed. 2005.
Colección:Cornerstones,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4442-0
003 DE-He213
005 20220113002733.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644420  |9 978-0-8176-4442-0 
024 7 |a 10.1007/0-8176-4442-3  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Knapp, Anthony W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Advanced Real Analysis  |h [electronic resource] /  |c by Anthony W. Knapp. 
250 |a 1st ed. 2005. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2005. 
300 |a XXIV, 466 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cornerstones,  |x 2197-1838 
505 0 |a to Boundary-Value Problems -- Compact Self-Adjoint Operators -- Topics in Euclidean Fourier Analysis -- Topics in Functional Analysis -- Distributions -- Compact and Locally Compact Groups -- Aspects of Partial Differential Equations -- Analysis on Manifolds -- Foundations of Probability. 
520 |a Basic Real Analysis and Advanced Real Analysis (available separately or together as a Set) systematically develop those concepts and tools in real analysis that are vital to every mathematician, whether pure or applied, aspiring or established. These works present a comprehensive treatment with a global view of the subject, emphasizing the connections between real analysis and other branches of mathematics. Key topics and features of Advanced Real Analysis: * Develops Fourier analysis and functional analysis with an eye toward partial differential equations * Includes chapters on Sturm-Liouville theory, compact self-adjoint operators, Euclidean Fourier analysis, topological vector spaces and distributions, compact and locally compact groups, and aspects of partial differential equations * Contains chapters about analysis on manifolds and foundations of probability * Proceeds from the particular to the general, often introducing examples well before a theory that incorporates them * Includes many examples and nearly two hundred problems, and a separate 45-page section gives hints or complete solutions for most of the problems * Incorporates, in the text and especially in the problems, material in which real analysis is used in algebra, in topology, in complex analysis, in probability, in differential geometry, and in applied mathematics of various kinds Advanced Real Analysis requires of the reader a first course in measure theory, including an introduction to the Fourier transform and to Hilbert and Banach spaces. Some familiarity with complex analysis is helpful for certain chapters. The book is suitable as a text in graduate courses such as Fourier and functional analysis, modern analysis, and partial differential equations. Because it focuses on what every young mathematician needs to know about real analysis, the book is ideal both as a course text and for self-study, especially for graduate students preparing for qualifying examinations. Its scope and approach will appeal to instructors and professors in nearly all areas of pure mathematics, as well as applied mathematicians working in analytic areas such as statistics, mathematical physics, and differential equations. Indeed, the clarity and breadth of Advanced Real Analysis make it a welcome addition to the personal library of every mathematician. 
650 0 |a Mathematical analysis. 
650 0 |a Functional analysis. 
650 0 |a Fourier analysis. 
650 0 |a Differential equations. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Probabilities. 
650 1 4 |a Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Differential Equations. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Probability Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817671853 
776 0 8 |i Printed edition:  |z 9780817643829 
830 0 |a Cornerstones,  |x 2197-1838 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-8176-4442-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)