Cargando…

Free Energy and Self-Interacting Particles

This book examines a system of parabolic-elliptic partial differential eq- tions proposed in mathematical biology, statistical mechanics, and chemical kinetics. In the context of biology, this system of equations describes the chemotactic feature of cellular slime molds and also the capillary format...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Suzuki, Takashi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2005.
Edición:1st ed. 2005.
Colección:Progress in Nonlinear Differential Equations and Their Applications, 62
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4436-9
003 DE-He213
005 20220116132237.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644369  |9 978-0-8176-4436-9 
024 7 |a 10.1007/0-8176-4436-9  |2 doi 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Suzuki, Takashi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Free Energy and Self-Interacting Particles  |h [electronic resource] /  |c by Takashi Suzuki. 
250 |a 1st ed. 2005. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2005. 
300 |a XIII, 370 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 2374-0280 ;  |v 62 
505 0 |a Summary -- Background -- Fundamental Theorem -- Trudinger-Moser Inequality -- The Green's Function -- Equilibrium States -- Blowup Analysis for Stationary Solutions -- Multiple Existence -- Dynamical Equivalence -- Formation of Collapses -- Finiteness of Blowup Points -- Concentration Lemma -- Weak Solution -- Hyperparabolicity -- Quantized Blowup Mechanism -- Theory of Dual Variation. 
520 |a This book examines a system of parabolic-elliptic partial differential eq- tions proposed in mathematical biology, statistical mechanics, and chemical kinetics. In the context of biology, this system of equations describes the chemotactic feature of cellular slime molds and also the capillary formation of blood vessels in angiogenesis. There are several methods to derive this system. One is the biased random walk of the individual, and another is the reinforced random walk of one particle modelled on the cellular automaton. In the context of statistical mechanics or chemical kinetics, this system of equations describes the motion of a mean ?eld of many particles, interacting under the gravitational inner force or the chemical reaction, and therefore this system is af?liated with a hierarchy of equations: Langevin, Fokker-Planck, Liouville-Gel'fand, and the gradient ?ow. All of the equations are subject to the second law of thermodynamics - the decrease of free energy. The mat- matical principle of this hierarchy, on the other hand, is referred to as the qu- tized blowup mechanism; the blowup solution of our system develops delta function singularities with the quantized mass. 
650 0 |a Mathematics. 
650 0 |a Differential equations. 
650 0 |a Mathematical analysis. 
650 0 |a Mathematical physics. 
650 0 |a Biomathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Applications of Mathematics. 
650 2 4 |a Differential Equations. 
650 2 4 |a Analysis. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817670641 
776 0 8 |i Printed edition:  |z 9780817643027 
830 0 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 2374-0280 ;  |v 62 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-8176-4436-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)