Cargando…

Lie Theory Unitary Representations and Compactifications of Symmetric Spaces /

Semisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-establ...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Anker, Jean-Philippe (Editor ), Orsted, Bent (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2005.
Edición:1st ed. 2005.
Colección:Progress in Mathematics, 229
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4430-7
003 DE-He213
005 20220117183446.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644307  |9 978-0-8176-4430-7 
024 7 |a 10.1007/b139076  |2 doi 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
245 1 0 |a Lie Theory  |h [electronic resource] :  |b Unitary Representations and Compactifications of Symmetric Spaces /  |c edited by Jean-Philippe Anker, Bent Orsted. 
250 |a 1st ed. 2005. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2005. 
300 |a X, 207 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 229 
505 0 |a to Symmetric Spaces and Their Compactifications -- Compactifications of Symmetric and Locally Symmetric Spaces -- Restrictions of Unitary Representations of Real Reductive Groups. 
520 |a Semisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-established researchers in key areas of semisimple Lie theory. Unitary Representations and Compactifications of Symmetric Spaces, a self-contained work by A. Borel, L. Ji, and T. Kobayashi, focuses on two fundamental questions in the theory of semisimple Lie groups: the geometry of Riemannian symmetric spaces and their compactifications; and branching laws for unitary representations, i.e., restricting unitary representations to (typically, but not exclusively, symmetric) subgroups and decomposing the ensuing representations into irreducibles. Ji's introductory chapter motivates the subject of symmetric spaces and their compactifications with carefully selected examples. A discussion of Satake and Furstenberg boundaries and a survey of the geometry of Riemannian symmetric spaces in general provide a good background for the second chapter, namely, the Borel-Ji authoritative treatment of various types of compactifications useful for studying symmetric and locally symmetric spaces. Borel-Ji further examine constructions of Oshima, De Concini, Procesi, and Melrose, which demonstrate the wide applicability of compactification techniques. Kobayashi examines the important subject of branching laws. Important concepts from modern representation theory, such as Harish-Chandra modules, associated varieties, microlocal analysis, derived functor modules, and geometric quantization are introduced. Concrete examples and relevant exercises engage the reader. Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups and symmetric spaces is required of the reader. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Geometry, Differential. 
650 0 |a Functions of complex variables. 
650 0 |a Harmonic analysis. 
650 0 |a Group theory. 
650 1 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Group Theory and Generalizations. 
700 1 |a Anker, Jean-Philippe.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Orsted, Bent.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817670467 
776 0 8 |i Printed edition:  |z 9780817635268 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 229 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b139076  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)