Cargando…

Complex, Contact and Symmetric Manifolds In Honor of L. Vanhecke /

This volume contains research and survey articles by well known and respected mathematicians on differential geometry and topology that have been collected and dedicated in honor of Lieven Vanhecke, as a tribute to his many fruitful and inspiring contributions to these fields. The papers, all writte...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Kowalski, Oldrich (Editor ), Musso, Emilio E. (Editor ), Perrone, Domenico (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2005.
Edición:1st ed. 2005.
Colección:Progress in Mathematics, 234
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4424-6
003 DE-He213
005 20220116003703.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644246  |9 978-0-8176-4424-6 
024 7 |a 10.1007/b138831  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
245 1 0 |a Complex, Contact and Symmetric Manifolds  |h [electronic resource] :  |b In Honor of L. Vanhecke /  |c edited by Oldrich Kowalski, Emilio E. Musso, Domenico Perrone. 
250 |a 1st ed. 2005. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2005. 
300 |a X, 278 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 234 
505 0 |a Curvature of Contact Metric Manifolds -- A Case for Curvature: the Unit Tangent Bundle -- Convex Hypersurfaces in Hadamard Manifolds -- Contact Metric Geometry of the Unit Tangent Sphere Bundle -- Topological-antitopological Fusion Equations, Pluriharmonic Maps and Special Kähler Manifolds -- ?2 and ?-Deformation Theory for Holomorphic and Symplectic Manifolds -- Commutative Condition on the Second Fundamental Form of CR-submanifolds of Maximal CR-dimension of a Kähler Manifold -- The Geography of Non-Formal Manifolds -- Total Scalar Curvatures of Geodesic Spheres and of Boundaries of Geodesic Disks -- Curvature Homogeneous Pseudo-Riemannian Manifolds which are not Locally Homogeneous -- On Hermitian Geometry of Complex Surfaces -- Unit Vector Fields that are Critical Points of the Volume and of the Energy: Characterization and Examples -- On 3D-Riemannian Manifolds with Prescribed Ricci Eigenvalues -- Two Problems in Real and Complex Integral Geometry -- Notes on the Goldberg Conjecture in Dimension Four -- Curved Flats, Exterior Differential Systems, and Conservation Laws -- Symmetric Submanifolds of Riemannian Symmetric Spaces and Symmetric R-spaces -- Complex Forms of Quaternionic Symmetric Spaces. 
520 |a This volume contains research and survey articles by well known and respected mathematicians on differential geometry and topology that have been collected and dedicated in honor of Lieven Vanhecke, as a tribute to his many fruitful and inspiring contributions to these fields. The papers, all written with the necessary introductory and contextual material, describe recent developments and research trends in spectral geometry, the theory of geodesics and curvature, contact and symplectic geometry, complex geometry, algebraic topology, homogeneous and symmetric spaces, and various applications of partial differential equations and differential systems to geometry. One of the key strengths of these articles is their appeal to non-specialists, as well as researchers and differential geometers. Contributors: D.E. Blair; E. Boeckx; A.A. Borisenko; G. Calvaruso; V. Cortés; P. de Bartolomeis; J.C. Díaz-Ramos; M. Djoric; C. Dunn; M. Fernández; A. Fujiki; E. García-Río; P.B. Gilkey; O. Gil-Medrano; L. Hervella; O. Kowalski; V. Muñoz; M. Pontecorvo; A.M. Naveira; T. Oguro; L. Schäfer; K. Sekigawa; C-L. Terng; K. Tsukada; Z. Vlášek; E. Wang; and J.A. Wolf. 
650 0 |a Geometry. 
650 0 |a Geometry, Differential. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Algebraic topology. 
650 1 4 |a Geometry. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Manifolds and Cell Complexes. 
700 1 |a Kowalski, Oldrich.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Musso, Emilio E.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Perrone, Domenico.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817670535 
776 0 8 |i Printed edition:  |z 9780817638504 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 234 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b138831  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)