Cargando…

Geometric Mechanics on Riemannian Manifolds Applications to Partial Differential Equations /

Differential geometry techniques have very useful and important applications in partial differential equations and quantum mechanics. This work presents a purely geometric treatment of problems in physics involving quantum harmonic oscillators, quartic oscillators, minimal surfaces, and Schrödinger...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Calin, Ovidiu (Autor), Chang, Der-Chen (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2005.
Edición:1st ed. 2005.
Colección:Applied and Numerical Harmonic Analysis,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4421-5
003 DE-He213
005 20220117102126.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644215  |9 978-0-8176-4421-5 
024 7 |a 10.1007/b138771  |2 doi 
050 4 |a QA403.5-404.5 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.2433  |2 23 
100 1 |a Calin, Ovidiu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometric Mechanics on Riemannian Manifolds  |h [electronic resource] :  |b Applications to Partial Differential Equations /  |c by Ovidiu Calin, Der-Chen Chang. 
250 |a 1st ed. 2005. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2005. 
300 |a XVI, 278 p. 26 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
505 0 |a Introductory Chapter -- Laplace Operators on Riemannian Manifolds -- Lagrangian Formalism on Riemannian Manifolds -- Harmonic Maps from a Lagrangian Viewpoint -- Conservation Theorems -- Hamiltonian Formalism -- Hamilton-Jacobi Theory -- Minimal Hypersurfaces -- Radially Symmetric Spaces -- Fundamental Solutions for Heat Operators with Potentials -- Fundamental Solutions for Elliptic Operators -- Mechanical Curves. 
520 |a Differential geometry techniques have very useful and important applications in partial differential equations and quantum mechanics. This work presents a purely geometric treatment of problems in physics involving quantum harmonic oscillators, quartic oscillators, minimal surfaces, and Schrödinger's, Einstein's and Newton's equations. Historically, problems in these areas were approached using the Fourier transform or path integrals, although in some cases (e.g., the case of quartic oscillators) these methods do not work. New geometric methods are introduced in the work that have the advantage of providing quantitative or at least qualitative descriptions of operators, many of which cannot be treated by other methods. And, conservation laws of the Euler-Lagrange equations are employed to solve the equations of motion qualitatively when quantitative analysis is not possible. Main topics include: Lagrangian formalism on Riemannian manifolds; energy momentum tensor and conservation laws; Hamiltonian formalism; Hamilton-Jacobi theory; harmonic functions, maps, and geodesics; fundamental solutions for heat operators with potential; and a variational approach to mechanical curves. The text is enriched with good examples and exercises at the end of every chapter. Geometric Mechanics on Riemannian Manifolds is a fine text for a course or seminar directed at graduate and advanced undergraduate students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics. It is also an ideal resource for pure and applied mathematicians and theoretical physicists working in these areas. 
650 0 |a Fourier analysis. 
650 0 |a Geometry, Differential. 
650 0 |a Differential equations. 
650 0 |a Mathematical physics. 
650 0 |a Harmonic analysis. 
650 0 |a Mathematics. 
650 1 4 |a Fourier Analysis. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Differential Equations. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Chang, Der-Chen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817670764 
776 0 8 |i Printed edition:  |z 9780817643546 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5017 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b138771  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)