Cargando…

Global Smoothness and Shape Preserving Interpolation by Classical Operators

This monograph examines and develops the Global Smoothness Preservation Property (GSPP) and the Shape Preservation Property (SPP) in the field of interpolation of functions. The study is developed for the univariate and bivariate cases using well-known classical interpolation operators of Lagrange,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gal, Sorin G. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2005.
Edición:1st ed. 2005.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-8176-4401-7
003 DE-He213
005 20220112235237.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780817644017  |9 978-0-8176-4401-7 
024 7 |a 10.1007/b137115  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Gal, Sorin G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Global Smoothness and Shape Preserving Interpolation by Classical Operators  |h [electronic resource] /  |c by Sorin G. Gal. 
250 |a 1st ed. 2005. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2005. 
300 |a XIII, 146 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Global Smoothness Preservation, Univariate Case -- Partial Shape Preservation, Univariate Case -- Global Smoothness Preservation, Bivariate Case -- Partial Shape Preservation, Bivariate Case. 
520 |a This monograph examines and develops the Global Smoothness Preservation Property (GSPP) and the Shape Preservation Property (SPP) in the field of interpolation of functions. The study is developed for the univariate and bivariate cases using well-known classical interpolation operators of Lagrange, Grünwald, Hermite-Fejér and Shepard type. One of the first books on the subject, it presents interesting new results alongwith an excellent survey of past research. Key features include: - potential applications to data fitting, fluid dynamics, curves and surfaces, engineering, and computer-aided geometric design - presents recent work featuring many new interesting results as well as an excellent survey of past research - many interesting open problems for future research presented throughout the text - includes 20 very suggestive figures of nine types of Shepard surfaces concerning their shape preservation property - generic techniques of the proofs allow for easy application to obtaining similar results for other interpolation operators This unique, well-written text is best suited to graduate students and researchers in mathematical analysis, interpolation of functions, pure and applied mathematicians in numerical analysis, approximation theory, data fitting, computer-aided geometric design, fluid mechanics, and engineering researchers. 
650 0 |a Numerical analysis. 
650 0 |a Operator theory. 
650 0 |a Functions of complex variables. 
650 0 |a Approximation theory. 
650 0 |a Functions of real variables. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Numerical Analysis. 
650 2 4 |a Operator Theory. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Real Functions. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817670979 
776 0 8 |i Printed edition:  |z 9780817643874 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b137115  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)