Cargando…

A First Course in Bayesian Statistical Methods

This book provides a compact self-contained introduction to the theory and application of Bayesian statistical methods. The book is accessible to readers having a basic familiarity with probability, yet allows more advanced readers to quickly grasp the principles underlying Bayesian theory and metho...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hoff, Peter D. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Springer Texts in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-92407-6
003 DE-He213
005 20220112150539.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387924076  |9 978-0-387-92407-6 
024 7 |a 10.1007/978-0-387-92407-6  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Hoff, Peter D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A First Course in Bayesian Statistical Methods  |h [electronic resource] /  |c by Peter D. Hoff. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2009. 
300 |a X, 272 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 2197-4136 
505 0 |a and examples -- Belief, probability and exchangeability -- One-parameter models -- Monte Carlo approximation -- The normal model -- Posterior approximation with the Gibbs sampler -- The multivariate normal model -- Group comparisons and hierarchical modeling -- Linear regression -- Nonconjugate priors and Metropolis-Hastings algorithms -- Linear and generalized linear mixed effects models -- Latent variable methods for ordinal data. 
520 |a This book provides a compact self-contained introduction to the theory and application of Bayesian statistical methods. The book is accessible to readers having a basic familiarity with probability, yet allows more advanced readers to quickly grasp the principles underlying Bayesian theory and methods. The examples and computer code allow the reader to understand and implement basic Bayesian data analyses using standard statistical models and to extend the standard models to specialized data analysis situations. The book begins with fundamental notions such as probability, exchangeability and Bayes' rule, and ends with modern topics such as variable selection in regression, generalized linear mixed effects models, and semiparametric copula estimation. Numerous examples from the social, biological and physical sciences show how to implement these methodologies in practice. Monte Carlo summaries of posterior distributions play an important role in Bayesian data analysis. The open-source R statistical computing environment provides sufficient functionality to make Monte Carlo estimation very easy for a large number of statistical models and example R-code is provided throughout the text. Much of the example code can be run ``as is'' in R, and essentially all of it can be run after downloading the relevant datasets from the companion website for this book. Peter Hoff is an Associate Professor of Statistics and Biostatistics at the University of Washington. He has developed a variety of Bayesian methods for multivariate data, including covariance and copula estimation, cluster analysis, mixture modeling and social network analysis. He is on the editorial board of the Annals of Applied Statistics. 
650 0 |a Probabilities. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Statistics . 
650 0 |a Sociology-Methodology. 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Econometrics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Operations Research, Management Science . 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Sociological Methods. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Econometrics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441908599 
776 0 8 |i Printed edition:  |z 9780387922997 
776 0 8 |i Printed edition:  |z 9781441928283 
830 0 |a Springer Texts in Statistics,  |x 2197-4136 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-92407-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)