Cargando…

A Guide to QTL Mapping with R/qtl

Quantitative trait locus (QTL) mapping is used to discover the genetic and molecular architecture underlying complex quantitative traits. It has important applications in agricultural, evolutionary, and biomedical research. R/qtl is an extensible, interactive environment for QTL mapping in experimen...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Broman, Karl W. (Autor), Sen, Saunak (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Statistics for Biology and Health,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-92125-9
003 DE-He213
005 20220113155311.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387921259  |9 978-0-387-92125-9 
024 7 |a 10.1007/978-0-387-92125-9  |2 doi 
050 4 |a QD415-436 
072 7 |a PSB  |2 bicssc 
072 7 |a SCI007000  |2 bisacsh 
072 7 |a PSB  |2 thema 
082 0 4 |a 572  |2 23 
100 1 |a Broman, Karl W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Guide to QTL Mapping with R/qtl  |h [electronic resource] /  |c by Karl W. Broman, Saunak Sen. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2009. 
300 |a XII, 400 p. 151 illus., 87 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Biology and Health,  |x 2197-5671 
505 0 |a Importing and simulating data -- Data checking -- Single-QTL analysis -- Non-normal phenotypes -- Experimental design and power -- Working with covariates -- Two-dimensional, two-QTL scans -- Fit and exploration of multiple-QTL models -- Case study I -- Case study II. 
520 |a Quantitative trait locus (QTL) mapping is used to discover the genetic and molecular architecture underlying complex quantitative traits. It has important applications in agricultural, evolutionary, and biomedical research. R/qtl is an extensible, interactive environment for QTL mapping in experimental crosses. It is implemented as a package for the widely used open source statistical software R and contains a diverse array of QTL mapping methods, diagnostic tools for ensuring high-quality data, and facilities for the fit and exploration of multiple-QTL models, including QTL x QTL and QTL x environment interactions. This book is a comprehensive guide to the practice of QTL mapping and the use of R/qtl, including study design, data import and simulation, data diagnostics, interval mapping and generalizations, two-dimensional genome scans, and the consideration of complex multiple-QTL models. Two moderately challenging case studies illustrate QTL analysis in its entirety. The book alternates between QTL mapping theory and examples illustrating the use of R/qtl. Novice readers will find detailed explanations of the important statistical concepts and, through the extensive software illustrations, will be able to apply these concepts in their own research. Experienced readers will find details on the underlying algorithms and the implementation of extensions to R/qtl. There are 150 figures, including 90 in full color. Karl W. Broman is Professor in the Department of Biostatistics and Medical Informatics at the University of Wisconsin-Madison, and is the chief developer of R/qtl. Saunak Sen is Associate Professor in Residence in the Department of Epidemiology and Biostatistics and the Center for Bioinformatics and Molecular Biostatistics at the University of California, San Francisco. 
650 0 |a Biochemistry. 
650 0 |a Biometry. 
650 0 |a Genetics. 
650 1 4 |a Biochemistry. 
650 2 4 |a Biostatistics. 
650 2 4 |a Genetics and Genomics. 
700 1 |a Sen, Saunak.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387921266 
776 0 8 |i Printed edition:  |z 9781461417088 
776 0 8 |i Printed edition:  |z 9780387921242 
830 0 |a Statistics for Biology and Health,  |x 2197-5671 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-92125-9  |z Texto Completo 
912 |a ZDB-2-SBL 
912 |a ZDB-2-SXB 
950 |a Biomedical and Life Sciences (SpringerNature-11642) 
950 |a Biomedical and Life Sciences (R0) (SpringerNature-43708)