Cargando…

The Noether Theorems Invariance and Conservation Laws in the Twentieth Century /

In 1915 Emmy Noether was invited by Klein and Hilbert to Göttingen to assist them in understanding the law of conservation of energy in Einstein's new general theory of relativity. She succeeded brilliantly. In the Invariante Variationsprobleme, published in 1918, she proved a fundamental theo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kosmann-Schwarzbach, Yvette (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Sources and Studies in the History of Mathematics and Physical Sciences,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-87868-3
003 DE-He213
005 20220116124953.0
007 cr nn 008mamaa
008 101117s2011 xxu| s |||| 0|eng d
020 |a 9780387878683  |9 978-0-387-87868-3 
024 7 |a 10.1007/978-0-387-87868-3  |2 doi 
050 4 |a QA21-27 
072 7 |a PBX  |2 bicssc 
072 7 |a MAT015000  |2 bisacsh 
072 7 |a PBX  |2 thema 
082 0 4 |a 510.9  |2 23 
100 1 |a Kosmann-Schwarzbach, Yvette.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Noether Theorems  |h [electronic resource] :  |b Invariance and Conservation Laws in the Twentieth Century /  |c by Yvette Kosmann-Schwarzbach. 
250 |a 1st ed. 2011. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2011. 
300 |a XIII, 205 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Sources and Studies in the History of Mathematics and Physical Sciences,  |x 2196-8829 
505 0 |a Preface.-Acknowledgements -- I. "Invariant Variational Problems". II -- Invariance and Conservation Laws in the Twentieth Century. The Inception and Reception of the Noether Theorems. - 1. The Inception of the Noether Theorems. -2. The Noether Theorems.-3. The Noether Theorems as Seen by Contemporaries and by Historians of Science.-4. From Bessel-Hagen to Hill, 1921-1951.-5. The Reception of Noether's First Theorem after 1950.-6. The Reception of Noether's Second Theorem after 1950.-7. After 1970-Genuine Generalizations.-Conclusion.-Appendix I. Postcard from Noether to Klein.-Appendix II. Letter from Noether to Klein. -Appendix III. Letter from Klein to Pauli.-Appendix IV. Letter from Noether to Einstein.-Lectures at the Mathematical Society of Göttingen.-References.-Index. 
520 |a In 1915 Emmy Noether was invited by Klein and Hilbert to Göttingen to assist them in understanding the law of conservation of energy in Einstein's new general theory of relativity. She succeeded brilliantly. In the Invariante Variationsprobleme, published in 1918, she proved a fundamental theorem linking invariance properties and conservation laws in any theory formulated in terms of a variational principle, and she stated a second theorem which put a conjecture of Hilbert in perspective and furnished a proof of a much more general result. This book makes the Invariante Variationsprobleme accessible in an English translation. It presents an analysis of the work of Noether's precursors, reformulates her argument in a more modern mathematical language, and recounts the strange history of the article's reception in the mathematics and physics communities. This study shows how her two theorems ultimately became the basis for any deep understanding of the role of symmetries in both classical and quantum physics. The Noether Theorems, a translation of Les Théorèmes de Noether whose French text has been revised and expanded, provides rich documentation drawn from both primary and secondary sources. This book will be of interest to historians of science, to teachers of mathematics, mechanics and physics, and to mathematicians and mathematical physicists. Also by Yvette Kosmann-Schwarzbach: Groups and Symmetries: From Finite Groups to Lie Groups, © 2010 Springer, ISBN: 978-0-387-78865-4. 
650 0 |a Mathematics. 
650 0 |a History. 
650 1 4 |a History of Mathematical Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387879437 
776 0 8 |i Printed edition:  |z 9780387878676 
776 0 8 |i Printed edition:  |z 9781461427681 
830 0 |a Sources and Studies in the History of Mathematics and Physical Sciences,  |x 2196-8829 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-87868-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)