Cargando…

Fractals and Universal Spaces in Dimension Theory

For metric spaces the quest for universal spaces in dimension theory spanned approximately a century of mathematical research. The history breaks naturally into two periods - the classical (separable metric) and the modern (not necessarily separable metric). While the classical theory is now well do...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lipscomb, Stephen (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-85494-6
003 DE-He213
005 20220115080026.0
007 cr nn 008mamaa
008 110406s2009 xxu| s |||| 0|eng d
020 |a 9780387854946  |9 978-0-387-85494-6 
024 7 |a 10.1007/978-0-387-85494-6  |2 doi 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBP  |2 thema 
082 0 4 |a 514  |2 23 
100 1 |a Lipscomb, Stephen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fractals and Universal Spaces in Dimension Theory  |h [electronic resource] /  |c by Stephen Lipscomb. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2009. 
300 |a XVIII, 242 p. 91 illus., 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a Construction of = -- Self-Similarity and for Finite -- No-Carry Property of -- Imbedding in Hilbert Space -- Infinite IFS with Attractor -- Dimension Zero -- Decompositions -- The Imbedding Theorem -- Minimal-Exponent Question -- The Imbedding Theorem -- 1992#x2013;2007 -Related Research -- Isotopy Moves into 3-Space -- From 2-Web IFS to 2-Simplex IFS 2-Space and the 1-Sphere -- From 3-Web IFS to 3-Simplex IFS 3-Space and the 2-Sphere. 
520 |a For metric spaces the quest for universal spaces in dimension theory spanned approximately a century of mathematical research. The history breaks naturally into two periods - the classical (separable metric) and the modern (not necessarily separable metric). While the classical theory is now well documented in several books, this is the first book to unify the modern theory (1960 - 2007). Like the classical theory, the modern theory fundamentally involves the unit interval. By the 1970s, the author of this monograph generalized Cantor's 1883 construction (identify adjacent-endpoints in Cantor's set) of the unit interval, obtaining - for any given weight - a one-dimensional metric space that contains rationals and irrationals as counterparts to those in the unit interval. Following the development of fractal geometry during the 1980s, these new spaces turned out to be the first examples of attractors of infinite iterated function systems - "generalized fractals." The use of graphics to illustrate the fractal view of these spaces is a unique feature of this monograph. In addition, this book provides historical context for related research that includes imbedding theorems, graph theory, and closed imbeddings. This monograph will be useful to topologists, to mathematicians working in fractal geometry, and to historians of mathematics. It can also serve as a text for graduate seminars or self-study - the interested reader will find many relevant open problems that will motivate further research into these topics. 
650 0 |a Topology. 
650 0 |a Mathematical analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Dynamical systems. 
650 1 4 |a Topology. 
650 2 4 |a Analysis. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Dynamical Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441927514 
776 0 8 |i Printed edition:  |z 9780387855370 
776 0 8 |i Printed edition:  |z 9780387854939 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-85494-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)