Cargando…

The Elements of Statistical Learning Data Mining, Inference, and Prediction, Second Edition /

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the fiel...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hastie, Trevor (Autor), Tibshirani, Robert (Autor), Friedman, Jerome (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2009.
Edición:2nd ed. 2009.
Colección:Springer Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-84858-7
003 DE-He213
005 20220118120438.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387848587  |9 978-0-387-84858-7 
024 7 |a 10.1007/978-0-387-84858-7  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Hastie, Trevor.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Elements of Statistical Learning  |h [electronic resource] :  |b Data Mining, Inference, and Prediction, Second Edition /  |c by Trevor Hastie, Robert Tibshirani, Jerome Friedman. 
250 |a 2nd ed. 2009. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2009. 
300 |a XXII, 745 p. 658 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 2197-568X 
505 0 |a Overview of Supervised Learning -- Linear Methods for Regression -- Linear Methods for Classification -- Basis Expansions and Regularization -- Kernel Smoothing Methods -- Model Assessment and Selection -- Model Inference and Averaging -- Additive Models, Trees, and Related Methods -- Boosting and Additive Trees -- Neural Networks -- Support Vector Machines and Flexible Discriminants -- Prototype Methods and Nearest-Neighbors -- Unsupervised Learning -- Random Forests -- Ensemble Learning -- Undirected Graphical Models -- High-Dimensional Problems: p ? N. 
520 |a During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Bioinformatics. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Probability Theory. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Computational and Systems Biology. 
700 1 |a Tibshirani, Robert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Friedman, Jerome.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387848846 
776 0 8 |i Printed edition:  |z 9780387848570 
776 0 8 |i Printed edition:  |z 9781071621226 
830 0 |a Springer Series in Statistics,  |x 2197-568X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-84858-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)