Cargando…

Information Theory and Statistical Learning

Information Theory and Statistical Learning presents theoretical and practical results about information theoretic methods used in the context of statistical learning. The book will present a comprehensive overview of the large range of different methods that have been developed in a multitude of co...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Emmert-Streib, Frank (Editor ), Dehmer, Matthias (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Algorithmic Probability: Theory and Applications
  • Model Selection and Testing by the MDL Principle
  • Normalized Information Distance
  • The Application of Data Compression-Based Distances to Biological Sequences
  • MIC: Mutual Information Based Hierarchical Clustering
  • A Hybrid Genetic Algorithm for Feature Selection Based on Mutual Information
  • Information Approach to Blind Source Separation and Deconvolution
  • Causality in Time Series: Its Detection and Quantification by Means of Information Theory
  • Information Theoretic Learning and Kernel Methods
  • Information-Theoretic Causal Power
  • Information Flows in Complex Networks
  • Models of Information Processing in the Sensorimotor Loop
  • Information Divergence Geometry and the Application to Statistical Machine Learning
  • Model Selection and Information Criterion
  • Extreme Physical Information as a Principle of Universal Stability
  • Entropy and Cloning Methods for Combinatorial Optimization, Sampling and Counting Using the Gibbs Sampler.